
LogECMem: Coupling Erasure-Coded In-Memory Key-Value
Stores with Parity Logging

Liangfeng Cheng
Huazhong University of Science and

Technology
Wuhan, China

lenfungcheng@hust.edu.cn

Yuchong Hu
Huazhong University of Science and

Technology
Wuhan, China

yuchonghu@hust.edu.cn

Zhaokang Ke
Huazhong University of Science and

Technology
Wuhan, China

2020612167@hust.edu.cn

Jia Xu
Huazhong University of Science and

Technology
Wuhan, China

helenxu@hust.edu.cn

Qiaori Yao
Huazhong University of Science and

Technology
Wuhan, China

yaoqr@hust.edu.cn

Dan Feng
Huazhong University of Science and

Technology
Wuhan, China

dfeng@hust.edu.cn

Weichun Wang
HIKVISION

Hangzhou, China
wangweichun@hikvision.com

Wei Chen
HIKVISION

Hangzhou, China
chenwei7@hikvision.com

ABSTRACT
In-memory key-value stores are often used to speed up Big Data
workloads on modern HPC clusters. To maintain their high availabil-
ity, erasure coding has been recently adopted as a low-cost redun-
dancy scheme instead of replication. Existing erasure-coded update
schemes, however, have either low performance or high memory
overhead. In this paper, we propose a novel parity logging-based
architecture, HybridPL, which creates a hybrid of in-place update
(for data and XOR parity chunks) and log-based update (for the
remaining parity chunks), so as to balance the update performance
and memory cost, while maintaining efficient single-failure repairs.
We realize HybridPL as an in-memory key-value store called Lo-
gECMem, and further design efficient repair schemes for multiple
failures. We prototype LogECMem and conduct experiments on
different workloads. We show that LogECMem achieves better up-
date performance over existing erasure-coded update schemes with
low memory overhead, while maintaining high basic I/O and repair
performance.

CCS CONCEPTS
• Computer systems organization ! Redundancy; • Informa-
tion systems ! Distributed storage.

KEYWORDS
Erasure coding, Key-value stores, Update, Parity logging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3480852

ACM Reference Format:
Liangfeng Cheng, Yuchong Hu, Zhaokang Ke, Jia Xu, Qiaori Yao, Dan Feng,
Weichun Wang, and Wei Chen. 2021. LogECMem: Coupling Erasure-Coded
In-Memory Key-Value Stores with Parity Logging. In The International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3458817.3480852

1 INTRODUCTION
Today’s parallel filesystem on modern HPC clusters [52] often rely
on in-memory key-value (KV) stores for high-performance data
analytics [35, 45, 61]. For instance, in-memory KV stores like Mem-
cached [9] are often used to keep primary data in memory as KV
items (called objects) to improve performance significantly com-
pared to on-disk solutions [3, 10, 41].

To maintain availability, many distributed KV stores replicate
data into multiple copies distributed across nodes (e.g., Dynamo
[21] and Cassandra [32]) to tolerate failures, which yet incurs high
redundancy. Recent studies [18, 34, 48, 59, 62] leverage erasure
coding for in-memory KV stores so as to provide availability guar-
antees at much lower cost compared to replication. Erasure coding
encodes original data chunks into parity chunks such that a subset
of a group of data/parity chunks (which collectively form a stripe)
can reconstruct the original data chunks.

For many big data analytics workloads, updates are often indis-
pensable [58, 62] or even heavy (e.g., 50%:50% ratio of read to update
[29]), and updates are expensive in erasure-coded storage as any up-
dated data chunk will cause all parity chunks of the same stripe to
be updated. Recently, the erasure-coded updates are considered in a
large-scale cluster (called wide stripes [25]) where each stripe has a
very large size and all its chunks are dispersed over dozens or even
hundreds of nodes (see §2.2.1 for details).

There are three major ways of performing erasure-coded updates
[53]: 1) in-place update, where the old data and parity chunks are
replaced with the new ones, 2) full-stripe update, where the new data

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

chunks are encoded into new stripes directly, and 3) parity logging,
where parity updates are inserted to the log nodes. Among these
three schemes, in-place update costs significant network transfers
and full-stripe update costs high storage overhead (see §2.2 and §2.3
for details), while parity logging that eliminates the reads of parity
chunks during updates with low storage overhead is state-of-the-art.

However, existing in-memory KV stores with erasure coding only
apply in-place update [18, 62] or full-stripe update [34], while none
has considered parity logging, which can actually reduce network
transfers for high update performance with low memory footprint.
The reason is that to deploy parity logging under in-memory KV
stores, it is challenging to handle the performance gap between mem-
ory and disk-based log nodes, since the latter has much lower transfer
rate than the former. Specifically, for erasure-coded in-memory KV
stores, even if parity logging can reduce the network transfers during
updates, the log nodes will still greatly degrade the update perfor-
mance; moreover, the single-failure repair performance will also be
lowered significantly via parity chunks residing in log nodes.

In this paper, we propose a new architecture for erasure-coded
in-memory KV stores, called HybridPL, which takes a hybrid of
in-place update and parity logging. First, HybridPL allows all data
and some parity chunks to perform in-place update in DRAMs for
fast single-failure repairs while maintaining low memory overhead.
Second, HybridPL enables the other parity chunks to perform parity
logging to reduce chunk transfers during update, and moreover, Hy-
bridPL develops a buffer-logging [42] based scheme to accelerate
updates of parity chunks in log nodes. We realize the above archi-
tecture as an in-memory KV store called LogECMem, and further
design efficient multi-failure repair schemes atop LogECMem. The
contributions of this work include:

• We observe via workloads that the existing update schemes for
erasure-coded in-memory KV stores either incur many chunk
transfers or require high memory overhead, which motivates us to
develop a parity logging based scheme to balance the cost of both
update and memory (§2).

• We show via reliability analysis that improving single-failure
repairs can significantly increase the reliability, so we propose
HybridPL which performs in-place update for fast single-failure
repairs with low memory footprint, while leveraging parity log-
ging as well as buffer logging for fast updates (§3).

• We build an in-memory KV store LogECMem atop HybridPL,
which realizes the basic requests (including single-failure repairs),
parity logging based updates, and buffer logging. We also improve
buffer logging by merging parity updates in batch (§4).

• We design efficient repair schemes atop LogECMem for multi-
failure repairs to reduce disk IOs over state-of-the-art parity log-
ging based repair schemes, while still maintaining high repair
performance (§5).

• We prototype LogECMem and compare it with in-place update
and full-stripe update via Amazon EC2 experiments. We show
that LogECMem reduces the update time by up to 37.8% and
58.0%, and the memory overhead by up to 22.2% and 49.0%,
respectively, while maintaining high basic I/O and repair perfor-
mance (§6). The source code of our prototypes is now available at
https://github.com/yuchonghu/logecmem.

2 BACKGROUND AND OBSERVATIONS
We provide the background details of erasure coding basics (§2.1)
and describe existing erasure-coded update schemes (§2.2). We
provide observations to show that full-stripe update cannot balance
the costs of update and memory based on YCSB workloads, which
motivates our main idea that introduces parity logging to reduce the
parity chunk transfers as well as the memory overhead (§2.3).

2.1 Primer on Erasure Coding
An erasure coding scheme, denoted by a (:, A ) code, can be con-
structed by two configurable parameters : and A . A (:, A ) code
organizes KV objects as fixed-size data chunks. For every set of :
data chunks, the KV store encodes them into additional A equal-size
parity chunks, such that any : out of the : + A data/parity chunks
(collectively called a stripe) suffice to rebuild the original : data
chunks.

Recent studies (see survey [44] and §8) have proposed many era-
sure coding constructions, among which Reed-Solomon (RS) codes
[49] remain the most popular erasure codes and are recently studied
in in-memory KV stores [18, 34, 48, 59, 62], so we focus on (:, A )
RS codes in this paper. Specifically, for a stripe composed of data
and parity chunks denoted by ⇡8 (1  8  :) and % 9 (1  9  A )
respectively, the parity chunks are calculated from a linear combina-
tion of the data chunks as % 9 =

Õ:
8=1 U

8�1
9 ⇡8 , where U8�19 (1  8  :

and 1  9  A ) are encoding coefficients. For example, for a (3, 1)
code, the parity chunk %1 = ⇡1 + U1⇡2 + U21⇡3.

Based on the definition of RS codes, we can have the following
definitions.

XOR parity chunks: refer to the first parity chunk of each stripe
(i.e., %1) is often the XORing of all data chunks (i.e., U1 = 1), which
can simply help repair a data chunk, e.g., ⇡1 = %1 � ⇡2 � ⇡3.

Delta: refers to the change between the old and new data chunks,
e.g., �⇡1 = ⇡ 0

1 �⇡1 when an old data chunk ⇡1 is updated to a new
data chunk ⇡ 0

1.

Parity delta: refers to the change between the old and new parity
chunks, e.g., �%1 = % 01 � %1 when an old parity chunk %1 is updated
to a parity chunk % 01.

Note that RS codes are basically based on linear encoding, so
when updating data chunks we can have two properties as follows:

• Property 1: The parity delta can be generated from the delta;
the parity deltas of all parity chunks of the same stripe can be
computed based on the same delta. For example, for a (3, 2) code,
when ⇡2 is updated to ⇡ 0

2, we can compute �%1 = % 01 � %1 =
(⇡1 + U1⇡ 0

2 + U21⇡3) � (⇡1 + U1⇡2 + U21⇡3) = U1�⇡2, where
�⇡2 = ⇡ 0

2 � ⇡2. Similarly, we have �%2 = U2�⇡2; �%1 and �%2
have the same delta �⇡2.

• Property 2: For multiple data chunk updates of the same stripe, a
parity chunk’s corresponding parity deltas can be reduced to one.
For example, for a (3, 1) code, when ⇡1 is first updated ⇡ 0

1 and
then ⇡2 is updated to ⇡ 0

2, we can compute %1’s two corresponding
parity deltas as ⇡ 0

1 �⇡1 and U1 (⇡ 0
2 �⇡2), which can be combined

into one parity delta ⇡ 0
1�⇡1+U1 (⇡ 0

2�⇡2) such that the up-to-date
parity chunk can be computed by %1 and ⇡ 0

1 � ⇡1 + U1 (⇡ 0
2 � ⇡2).

We will leverage the two properties in §3.3, §4.2, §4.3, and §5.2.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

;ďͿ�&ƵůůͲƐƚƌŝƉĞ�ƵƉĚĂƚĞ�н�ƵƉĚĂƚĞͲŚĞĂǀǇ
;ŶŽ�ƉĂƌŝƚǇ�ƌĞĂĚƐ͕�ϭϴ�ƐƚŽƌĞĚ�ĐŚƵŶŬƐͿ

;ĂͿ�/ŶͲƉůĂĐĞ�ƵƉĚĂƚĞ
�;ϯ�ƉĂƌŝƚǇ�ƌĞĂĚƐ͕�ϵ�ƐƚŽƌĞĚ�ĐŚƵŶŬƐͿ

;ĐͿ�&ƵůůͲƐƚƌŝƉĞ�ƵƉĚĂƚĞ�н�ƵƉĚĂƚĞͲůŝŐŚƚ
�;ϯ�ƉĂƌŝƚǇ�ƌĞͲĐŽŵƉƵƚĂƚŝŽŶƐ͕�ϭϯ�ƐƚŽƌĞĚ�ĐŚƵŶŬƐͿ

;ĚͿ�WĂƌŝƚǇ�ůŽŐŐŝŶŐ�����������
;ŶŽ�ƉĂƌŝƚǇ�ƌĞĂĚƐ͕�ϭϮ�ƐƚŽƌĞĚ�ĐŚƵŶŬƐͿ

KůĚ EĞǁ hŶĐŚĂŶŐĞĚ�ĐŚƵŶŬ

�ϰΖ �ϱΖ Wϰ�ϲΖ�ϯΖ�ϮΖ�ϭΖ Wϱ Wϲ

�ϰ �ϱ Wϭ�ϲ�ϯ�Ϯ�ϭ WϮ Wϯ
&Žƌ�'�

�ϰ �ϱ Wϭ�ϲ�ϯ�Ϯ�ϭ WϮ Wϯ
Wϳ Wϴ WϵZĞͲĐŽŵƉƵƚĞ

�ϭΖ ͘͘͘

WϭΖ�ϭΖ WϮΖ WϯΖ

�ϰ �ϱ Wϭ�ϲ�ϯ�Ϯ�ϭ WϮ Wϯ

ѐ��ϭ�с��ϭΖͲ�ϭ ZĞĂĚ
ZĞĂĚ

ZĞĂĚ

�ϰ �ϱ Wϭ�ϲ�ϯ�Ϯ�ϭ WϮ Wϯ�ϭ
ѐ��ϭ�с��ϭΖͲ�ϭ

�ϭΖ
/Ŷ�ůŽŐƐ

əWϭəWϮəWϯ

Figure 1: Illustration of different parity update schemes

2.2 Parity Update Schemes
Parity updates in erasure-coded storage incur significant network
transfer, since they need to re-compute parity chunks for consistency.
We re-examine existing parity update schemes that fall into four
classes: direct reconstruction, in-place update, full-stripe update, and
parity logging.
Direct reconstruction: A straightforward way is to first read all the
data chunks that are not involved in the update and then reconstruct
the new parity chunks using the read chunks and the new data chunks,
which clearly costs a large number of chunk transfers.
In-place update: In-place update [12, 18, 62] reads old parities,
computes parity deltas via delta (§2.1), generates new parities via
parity deltas, and replaces the old parities. However, in-place update
incurs additional parity chunk reads, which hinders the update per-
formance. Figure 1(a) updates an old data chunk ⇡1 to a new one
⇡ 0
1, and generates the corresponding new parity chunks % 01, %

0
2 and

% 03 by merging the old parity chunks %1, %2 and %3 with the delta
4⇡1 = ⇡ 0

1 � ⇡1, incurring three additional parity chunk reads.
Full-stripe update: To eliminate the reads of parity chunks, full-
stripe update directly encodes new data chunks into new stripes,
and marks the old data chunks as invalid such that they can be
released directly via garbage collection (GC). It has been deployed
in practical systems, e.g., QFS [43], BCStore [34], and Giza [17].
However, full-stripe update may incur high storage overhead to
store stale data chunks, and require parity re-computations for the
remaining active unchanged data chunks during GC. Figure 1(b)
considers an update-heavy workload which updates multiple old
data chunks ⇡1,⇡2, . . . ,⇡6 to the new data chunks ⇡ 0

1,⇡
0
2, . . . ,⇡

0
6,

which are encoded into a new stripe without parity chunk reads, yet
requiring high storage overhead of 18 chunks. Figure 1(c) considers
an update-light workload which updates an old data chunk ⇡1 to a
new one ⇡ 0

1, incurring three additional parity chunk re-computations
for the active unchanged data chunks ⇡2,⇡3, . . . ,⇡6.
Parity logging: Parity logging (PL) [30, 56] improves in-place up-
date by logging the parity deltas in log devices, so as to reduce the
read overhead of old parity chunks during updates, while maintaining
lower storage overhead than full-stripe update. Figure 1(d) logs the
parity deltas 4%1, 4%2, 4%3 at log nodes, so as to eliminate the parity
chunk reads while only storing 13 chunks. Note that parity logging
is only adopted in disk-based distributed storage [16, 30, 56], and
our work is the first to study how parity logging works for in-memory
KV stores.

(a) 1st update from a to a’∆P1 = a' - a, ∆P2 = a' - a

Incoming data stream: a, b, a’, b’

P2P1ba' ∆P2 ∆P1 

∆P1 ∆P2 a'

node
chunk

(b) 2nd update from b to b’∆P1' = b' - b, ∆P2' = 2(b' - b)

P2P1b'a' ∆P2 ∆P1 

∆P1' ∆P2' b'

∆P2' ∆P1' 

Figure 2: Illustration on parity logging in (2, 2) code. We assume
an incoming data stream: 0,1,00,1 0, where 0 and 1 are original
data chunks, 00 is updated from 0, and 1 0 is updated from 1. 0
and 1 form a stripe with %1 = 0 + 1 and %2 = 0 + 21.

Figure 2 illustrates the details of PL. PL only needs to write the
following parity deltas �%1, �%2, �% 01, �% 02 in log nodes, without
reading %1 and %2. In this way, when we want to read any up-to-date
parity chunk, we only need to retrieve its original parity chunk and
all its parity deltas, and then combine them into the up-to-date parity
chunk. For example, in Figure 2, we can obtain the up-to-date chunk
of the first parity via %1 + 4%1 + 4% 01.

2.2.1 Large-scale erasure-coded updates. Recall that recent
studies on erasure-coded updates have begun to focus on a large-
scale cluster in §1; i.e., : is very large (e.g., :=128 [25]). In this case,
each stripe is so wide that full-stripe update will have a lot of re-
maining active unchanged data chunks of the stripe during GC, thus
incurring significant network transfers for parity re-computations to
form a new stripe.

Thus, the recent proposed notion wide stripe [25] motivates us
to explore in-place update and parity logging instead of full-stripe
updates in a large-scale cluster, since the first two update schemes
only update parity chunks based on deltas, regardless of how wide
the stripe is. Actually, our main idea is a hybrid of in-place update
and parity logging for parity updates, which will be specified in §3.

2.3 Observations
We have illustrated two observations of full-stripe update in Figure
1: high memory overhead for update-heavy workloads and many
chunk transfers for re-computations of remaining active data chunks
for update-light workloads. Here, we verify these two observations
via workloads as follows.
Observation 1: The workloads are generated by Yahoo! Cloud Serv-
ing Benchmark (YCSB) [20]. Specifically, we load one million ob-
jects with fixed 4KiB-size value, and every : objects forms a stripe
in a FIFO mode. We also set one million requests based on Zip-
fian distribution versus different read/update ratios (e.g., the most
update-heavy case refers to read:update = 50%:50%),with different
(:, A ) codes: (6, 3) as in HDFS [46], (10, 4) as in f4 [40], (12, 4) as
in Azure [27], and (15, 3) as in Pelican [15].

Figure 3 shows the number of stripes that are updated for different
number of new chunks per stripe. For example, in Figure 3(a), for
update-light workload (we consider read:update = 95%:5% to be
update-light in this paper), we see that most of the updated stripes
have only one new data chunk, meaning that the active unchanged
: � 1 data chunks of each of those stripes have to be retrieved to
re-compute the parity chunks. When the workload becomes more

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

0

20K

40K

60K

80K

1 2 3 4 5 6
# of new data chunks per stripe

# 
of

 u
pd

at
ed

 s
tri

pe
s 95:5

80:20
70:30
50:50

0

10K

20K

30K

40K

50K

1 2 3 4 5 6 7 8 9 10
# of new data chunks per stripe

# 
of

 u
pd

at
ed

 s
tri

pe
s 95:5

80:20
70:30
50:50

(a) HDFS:(6, 3) code (b) f4:(10, 4) code

0

10K

20K

30K

40K

1 2 3 4 5 6 7 8 9 10 11 12
# of new data chunks per stripe

# 
of

 u
pd

at
ed

 s
tri

pe
s 95:5

80:20
70:30
50:50

0

5K

10K

15K

20K

25K

1 2 3 4 5 6 7 8 9 101112131415
# of new data chunks per stripe

# 
of

 u
pd

at
ed

 s
tri

pe
s

95:5
80:20
70:30
50:50

(c) Azure:(12, 4) code (d) Pelican:(15, 3) code

Figure 3: Observation 1: The number of updated stripes, versus
the number of new chunks per stripe.

95%:5% 80%:20% 70%:30% 50%:50%
In-place update " " " "

Full-stripe update 1.05" 1.2" 1.3" 1.5"

Table 1: Observation 2: Memory overhead of in-place update
and full-stripe update.

update-heavy, more updated stripes have more new chunks. For the
most update-heavy workload (we consider read:update = 50%:50%
to be update-heavy in this paper) some of the updated stripes can
have three or more new data chunks, thereby effectively reducing
the retrieved chunks. Figure 3(b), (c) and (d) have similar results.

Note that when : is large, the remaining active unchanged chunks
per stripe become more, so degrades the efficiency of re-computation
of the parity chunks, which is consistent with §2.2.1.
Observation 2: We let the total size of all objects be " , and let the
ratio of update requests be ? (e.g., read:update = 95% : 5% means ? =
5%). We can calculate memory overheads of in-place and full-stripe
updates based on details in §2.2. Table 1 shows that full-stripe has
only 5% more memory overhead than in-place for the update-light
workload (i.e., read:update = 95%:5%), but the additional memory
increases when the workload becomes more update-heavy, and even
reaches 50% for the most update-heavy workload (i.e., read:update
= 50%:50%), which may not be cost-efficient.
Main idea: Based on the above observations, we find that it is
difficult for full-stripe update to trade off both the cost of update
(in terms of chunk transfers) and memory overhead for any update
workload. Also, in-place update always incurs additional chunk
transfers to read parity chunks for any update workload (§2.2). In
contrast to the above two, we find that parity logging (§2.2) can
largely eliminate the parity chunk reads during updates unlike in-
place update, and retain in-place update for data chunks to avoid
heavy memory overhead unlike full-stripe update.

Therefore, our main idea is to introduce parity logging to in-
memory KV stores to reduce the costs of both update and memory.
However, the disk-based log devices have pretty lower transfer rate
than DRAMs, thereby degrading the update and repair performance,
so how to deploy disk-oriented parity logging on in-memory KV
stores remains challenging, which will be addressed in §3.

9 8 7 6 5
9λ 8λ 7λ 6λ

μ μ' μ'
Data Loss

Figure 4: Markov model for (6,3) code.

⌫ (Gb/s) 1 10 40 100
(6, 3) code 1.03e+09 9.76e+09 3.89e+10 9.71e+10
(10, 4) code 6.41e+08 5.88e+09 2.34e+10 5.83e+10
(12, 4) code 5.44e+08 4.91e+09 1.95e+10 4.86e+10
(15, 3) code 4.47e+08 3.94e+09 1.56e+10 3.89e+10

Table 2: MTTDLs (in years) for varying ⌫ (Gb/s) under differ-
ent codes and 1/_ = 4 years.

3 HybridPL ARCHITECTURE
Based on observations in §2.3, our main goal is to address the
challenge of how to couple in-memory KV stores with parity logging
for high repair and update performance. Here, we first analyze the
impact of the single-failure repair rate on reliability, and show that
improving it can significantly increase the reliability (§3.1). Based
on the reliability results, we design the architecture HybridPL, which
keeps data and XOR parity chunks of the stripe with in-place update
in DRAM nodes for low memory overhead and high single-failure
repair performance, while logging the parity deltas of the other parity
chunks to disk nodes as well as a leveraging buffer-logging technique
for parity deltas in log nodes for high update performance (§3.2).

3.1 Reliability Analysis
We analyze the mean-time-to-data-loss (MTTDL) metric using the
Markov model as in prior studies (e.g., [19, 22, 27, 50, 55]). Figure 4
shows the Markov model for (6, 3) code used in HDFS. Each state
represents the number of available nodes of a stripe. For example,
State 9 means that all nodes are healthy, while State 5 means data
loss. We also make the models for (10, 4) code (f4 [40]), (12, 4) code
(Azure [27]) and (15, 3) code (Pelican [15]) in the same way.

To model failure, we let _ be the failure rate of each node. The
state transition rate from State 8 to State 8 � 1, where 6  8  9, is 8_,
since any of the 8 nodes in State 8 fails independently.

To model repair, we use the similar assumptions as in Azure [27]:
for the single failure, let ` be the single-failure repair rate from
State 8 to State 9; for multiple failures, let ` 0 be the repair rate for
each node from State 8 to State 8 + 1, where 6  8  7. To calculate
` and ` 0, we let each node have capacity of ( and data transfer rate
of ⌫. Thus, the average repair rate of single failures is ` = ⌫/((⇠),
where ⇠ is the single-failure repair cost. For the (6, 3) RS code, it
takes 6 chunks to repair any failed chunk, so the single-failure repair
cost ⇠ = 6. In addition, another repair rate when multiple failures
is ` 0 = 1/) , where ) denotes the detection and triggering time of
multiple failures.

We configure the parameters as follows. For _, we assume that
the mean-time-to-failure (MTTF) of a node is in the range of a few
years [51], and set 1/_ = 4 years as in Facebook [50]. We also set
( = 16)⌫ and ) = 30 minutes as in Azure [27],

To show the impact of the single-failure rate (i.e., `) on reliability,
we show the MTTDL results with different data transfer rate of

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

Client
...

Log Nodes

P2

Buffer

Disk
P3

Buffer

Disk

D1

DRAM

D2

DRAM

D3

DRAM

D4

DRAM

D5

DRAM

D6

DRAM

P1

DRAM

DRAM Nodes

Proxy
∆P2

∆P3Queue ... QueueQueue

Figure 5: HybridPL architecture with (6, 3) code.

nodes (i.e., ⌫) ranging from 1Gbps to 100Gbps (see Table 2). Here,
for disk nodes, the transfer rate can reach nearly 1Gbps [6], so we
set ⌫ = 1⌧1?B. For DRAM nodes, the transfer rate can achieve
up to 17GB per second [4], so we set ⌫ = 100⌧1?B, which means
the practical DRAM node’s transfer rate is limited by 100 Gigabit
Ethernet’s transfer rate. Similarly, we also set ⌫ = 10⌧1?B (10
Gigabit Ethernet) and ⌫ = 40⌧1?B (40 Gigabit Ethernet).

From Table 2, we observe that for each code, the MTTDL in-
creases significantly with ⌫, which means that the transfer rate of the
nodes for repairing the single-node failure has a significant impact
on the reliability. For example, for ⌫ = 100⌧1/B, which uses DRAM
nodes to perform the single-failure repair, the MTTDL increases by
94.27⇥ under (6,3) code compared to the case for ⌫ = 1⌧1/B, which
only uses disk nodes to perform the single-failure repair.

Therefore, the above reliability results inspire us to just keep only
one parity chunk of each stripe in DRAM nodes for fast single-
failure repairs to obtain decent reliability, which will be leveraged to
design our architecture in §3.2.

3.2 Overview
We present the HybridPL architecture, which applies both in-place
update and parity logging in a hybrid mode to in-memory KV stores.
Figure 5 shows HybridPL with (6, 3) code. HybridPL comprises
multiple clients, one proxy, multiple DRAM nodes and log nodes.
Specifically, 1) the clients interface with user applications; 2) the
proxy serves as a front-end interface for the clients to perform vari-
ous requests on objects (e.g, write, read, degraded read, delete in §4.1
and update in §4.2), as well as multi-failure repair operations in §5;
3) the DRAM nodes store all data chunks (e.g., ⇡1,⇡2,⇡3,⇡4,⇡5
and ⇡6) and the XOR parity chunks (e.g., %1); and 4) multiple log
nodes store the remaining parity chunks (e.g., %2 and %3).

Prior workload studies of in-memory KV stores [14, 41] consider
that the size of each object is usually small, which is hard to deploy
erasure coding directly. To this end, we organize multiple objects to
form a larger fixed-size unit (i.e., data chunks) as [18, 34, 59, 62].
To realize that, the proxy has multiple queues that contain encoding
buffers to gather objects that are newly written to form : fixed-size
data chunks (4 KiB as the default size [59, 62]) and encodes them
into A equal-size parity chunks. In addition, the proxy has to maintain
metadata of stripes to manage the clients’ requests (e.g., updates),
degraded reads and repair operations, mainly including the Stripe ID
that identifies each stripe, the Object Index that maps objects to the
Stripe ID with detailed data chunk metadata, and the Stripe Index
that records all : data chunks and A parity chunks for each stripe.

With a (=,:) code, we can tolerate up to = � : DRAM (or log)
node failures, i.e., the objects stored in the HybridPL architecture
can still be available even if three DRAM (or log) nodes become

offline with (6, 3) code in Figure 5. In addition, to avoid the single
point of failure of the proxy, we can maintain multiple hot backups
of the proxy similar to the prior studies [18, 34], which also could
protect the reliability of metadata, including the Stripe Index and
Object Index since these data structures are stored in the proxy and
replicated in the backup proxies.

3.3 Goals and Approaches
Based on the observations in §2.3 and reliability analysis in §3.1,
HybridPL focuses on the following goals:
• (Goal 1) Low memory overhead: HybridPL mitigates memory

overhead via in-place update for data chunks (§3.3.1).
• (Goal 2) Efficient updates: HybridPL performs parity logging

for non XOR parity chunks and leverages buffer logging for parity
deltas in log nodes to accelerates updates (§3.3.2).

• (Goal 3) Efficient single-failure repair: HybridPL keeps XOR
parity chunks in DRAM nodes to ensure degraded reads efficiency
(§3.3.1).

3.3.1 In-place update for data and XOR parity chunks.

In-place updated data chunks: In-place update does not incur
extra memory overhead, while full-stripe update does, as the latter
preserves multiple old versions of chunks in memory, especially
for update-heavy workloads. Hence, HybridPL can reduce memory
overhead via deploying in-place update for data chunks compared to
full-stripe update.
DRAM-based XOR parity chunks: Recall that the data transfer
rate of the nodes for repairing the single-node failure has a significant
impact on the reliability in §3.1, that is, we can only keep XOR parity
chunks in DRAMs as well as data chunks to obtain high performance
of single-failure repair. Specifically, When one requested data chunk
cannot be read directly due to single failure, HybridPL retrieves the
remaining : � 1 data and XOR parity chunks of the same stripe to
decode the requested data chunk within the DRAM nodes, which
ensures high performance of single-failure repairs.

Thus, HybridPL achieves Goal 1 and 3.

3.3.2 Parity logging for non XOR parity chunks.

Parity logging to eliminate parity chunk transfers: HybridPL
updates parity chunks except XOR ones via parity logging, such that
HybridPL only needs to store parity deltas into log devices to update
parity chunks Clearly, HybridPL neither reads old parity chunks for
updating parity chunks, nor retrieves active unchanged data chunks
for recomputing parity chunks like full-stripe update.
Buffer logging for parity deltas: However, with parity logging,
the low transfer rate of log nodes will become the bottleneck to
degrade write (update) performance compared to that of DRAM
nodes. To address that, we introduce the buffer logging approach
proposed in RAMCloud [42], which distributes replicas for both
DRAMs and disks. RAMCloud stores the data in DRAMs of the
primary server and replicas on the disks of backup servers as shown
in Figure 6(a). During write operations, the primary server writes the
data in DRAMs and forwards the data replica to all backup servers.
RAMCloud considers the write operation completed as soon as the
replicas have been written to DRAMs of backup servers, where these
disk replicas in DRAMs can be flushed to disks asynchronously.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

ĚŝƐŬ

�Z�D

ĚŝƐŬ

�Z�D

ĚŝƐŬ

�Z�D

ƌĞƉůŝĐĂ ƌĞƉůŝĐĂǁƌŝƚĞ

;ĂͿ��ƵĨĨĞƌ�ůŽŐŐŝŶŐ�ŝŶ�Z�D�ůŽƵĚ
�ĂĐŬƵƉ�ƐĞƌǀĞƌ WƌŝŵĂƌǇ�ƐĞƌǀĞƌ �ĂĐŬƵƉ�ƐĞƌǀĞƌ

WϮ

�ƵĨĨĞƌ

ĚŝƐŬ
>ŽŐ�ŶŽĚĞ

Wϯ

�ƵĨĨĞƌ

ĚŝƐŬ
>ŽŐ�ŶŽĚĞ

ĚĞůƚĂ ĚĞůƚĂ

WƌŽǆǇ

;ďͿ��ƵĨĨĞƌ�ůŽŐŐŝŶŐ�ŝŶ�,ǇďƌŝĚW>

ƵƉĚĂƚĞ

əWϮ əWϯ

Figure 6: Illustration of the buffer logging in RAMCloud and
HybridPL in (6, 3) code as Figure 5.

Note that the asynchronous IOs at the log nodes can accelerate
write/update operations, but need to maintain the crash consistency
that can reconstruct the data from the disk logs when buffers crash.

We observe that buffer logging can be also applied to HybridPL,
as illustrated in Figure 6(b). Specifically, during update operations,the
proxy can also send the same delta to all log nodes, similar to RAM-
Cloud that forwards the same replica to backup servers. Then each
log node can compute its parity delta of (e.g., �%2 and �%3) via
the delta, based on Property 1 in §2.1. In this way, HybridPL can
perform fast writes (updates) operations since they can be com-
pleted as soon as the parity deltas have been stored to DRAMs of
log nodes, and the parity deltas in DRAMs will be flushed to disks
asynchronously in batches (See details in §4.3).

Thus, HybridPL achieves Goal 2.

4 LogECMem DESIGN
We design LogECMem based on the HybridPL architecture, de-
scribe its design of basic requests (§4.1), depict the update workflow
to show that LogECMem reduces the chunk transfers during up-
dates (§4.2). We also specify in LogECMem how to design buffer
logging using merging parity deltas, which can further mitigate the
overhead of the disk IOs (§4.3).

4.1 Basic Requests
LogECMem supports four basic requests: write, read, degraded read
and delete, where key and value of each object are arbitrary strings.
Write: For a new object to be written into LogECMem, the proxy
first selects a DRAM node to store the object via the object’s key. To
realize erasure coding, the proxy maintains a queue for each DRAM
node, where each element of the queue is a fixed-size unit (e.g.,
4KiB) that can gather the values of objects via first-come-first-serve
for forming data chunks. Note that we can locate an object via its
offset and length within a data chunk. When : out of all queues have
at least one full unit, these : units can be changed into : data chunks
and encoded into A parity chunks. The proxy associates these : + A
data and parity chunks of the same stripe with a unique Stripe ID.
It then distributes the XOR parity chunk (its key comes from the
Stripe ID) into one of the DRAM nodes and the other A � 1 parity
chunks into different log nodes. Especially, these non XOR parity
chunks are not stored in log nodes immediately. Instead, they can be
stored in buffers of log nodes temporarily for fast writes (see §4.3).

Here, we organize the metadata of the write operation as follows.
First, the proxy maps the written object’s key to one element of
Object Index, where each element is composed of Stripe ID, se-
quence number of the data chunk within the stripe, offset and length

ack

D4D1

4

2

D2 D3 P1

4

2

ack

DRAM nodes

ack

Log nodes
Proxy

3

6

1

D5 D6

ack

P3P2

4 4

5 5

Figure 7: Workflow of the update from ⇡1 to ⇡ 0
1 in (6, 3) code:

(1) the proxy obtains the object’s Stripe ID, sequence number,
offset and length from the Object Index; (2) ⇡1’s and %1’s nodes
return ⇡1 and %1 to the proxy; (3) the proxy computes �⇡1 and
% 01, replaces ⇡1 with ⇡ 0

1, replaces %1 with % 01, and sends �⇡1 to
%2’s and %3’s nodes; (4) ⇡1’s and %1’s nodes returns acks to the
proxy after the writes, %2’s node computes and stores �%2 in
buffer, and %3’s node computes and stores �%3 in buffer; (5)
%2’s and %3’s nodes returns acks to the proxy; (6) the proxy com-
pletes the update after receiving acks from ⇡1’s, %1’s, %2’s and
%3’s nodes.

within the data chunk. Second, the proxy records all : + A data/parity
chunks in order and all objects’ keys of each data chunks via the
Stripe Index. In this way, we can decode this written object when it
fails to be read directly (see the degraded read operation below).
Read: For obtaining an existing object, the proxy selects the DRAM
node and retrieve it from LogECMem via the object’s key.
Degraded read: For an object that is failed to read from LogECMem
normally, the proxy triggers a decoding process to re-obtain it, so
the read operation is performed in a degraded mode. We study that
both the transient network congestion and permanent node failure
can result in chunk unavailability. Recall that HybridPL architecture
realizes efficient single-failure repair (See §3.2) since it stores : data
and XOR parity chunks in DRAM nodes.

To degraded read an object that belongs to the unavailable data
chunk, LogECMem first obtains the Stripe ID, sequence number of
the data chunk, offset and length via looking up the Object Index,
reconstructs : � 1 available data chunks via gathering all contained
objects of this stripe’s data chunks via the Stripe Index with the
Stripe ID, as well as the XOR parity chunk, decodes the unavailable
data chunk from these :�1 data chunks (based on sequence number)
and one XOR parity chunk, and re-obtains the object by its offset
and length from the decoded data chunk.
Delete: For an existing object to be removed from LogECMem, the
proxy can update the object’s value (See §4.2) to zero-bytes straight-
forwardly as the delete request, but we need to deploy garbage
collection method to reclaim these zero-bytes space.

4.2 Updates
The update operation changes an existing object’s old value into a
new value, where we also need to update the parity chunks of the
stripe that contains this object.

To update an object, the proxy first obtains the object’s Stripe ID,
sequence number, offset and length from the Object Index. Then, the

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

Incoming data stream: a, b, a’, b’, a’’

(a’’-a’)+2(b’-b)a’-a 2(b’-b) a’’-a’

Figure 8: Merge-based buffer logging for a parity chunk 0 + 21
where 0 and 1 are original data chunks. We assume an incoming
data stream: 0,1,00,1 0 and 000, where 0 and 1 are original data
chunks, 00 and 000 are updated from 0, and 1 0 is updated from
1.

proxy retrieves the old value of the object and the stripe’s XOR parity
chunk (note that its key can be-obtained by the Stripe ID; see §4.1) by
read operations. Here, the proxy first computes the delta from the old
and new data chunks, uses the delta and a corresponding coefficient
(determined by the sequence number) to compute the parity delta of
the XOR parity chunk via Property 1 in §2.1, and then computes the
new XOR parity chunk via merging the old parity chunk with the
parity delta. The proxy also sends the delta to each log node with the
corresponding coefficient (determined by the sequence number), and
each log node computes its parity deltas in the similar way. Finally,
LogECMem writes the new object and the XOR parity chunk to the
DRAM nodes, and writes the parity deltas with offsets and lengths
to the log nodes. Figure 7 depicts the update workflow of an object
that belongs to ⇡1 in (6, 3) code, where ⇡1,⇡2,⇡3,⇡4,⇡5 and %1
are stored in DRAM nodes and %2, %3 in log nodes. Note that for
XOR parity chunks, LogECMem performs in-place update for the
entire chunk, but for non XOR parity chunks, records log-file-based
parity deltas with the object’s offset and length.

4.3 Merge-based Buffer Logging
Based on HybridPL, LogECMem stores data and XOR parity
chunks as objects in in-memory KV stores, while storing the other
parity chunks and parity deltas as files in log nodes. Here, Lo-
gECMem create a log file for each parity chunk and its correspond-
ing parity deltas, where its filename is generated via its Stripe ID.

We find that there are often multiple parity deltas of the same
stripe in each log node’s buffer. Thus, based on Property 2 in §2.1,
LogECMem improves the buffer logging method of HybridPL by
merging multiple parity deltas (called merge-based buffer logging)
to reduce them into one chunk. In this way, LogECMem can reduce
disk IOs during updates at log nodes. As illustrated in Figure 8, with
this incoming data stream 0,1,00,1 0,000, the parity chunk 0 + 21 in
HybridPL has to store three parity deltas, which can be reduced to
only one parity delta (000 � 0) + 2(1 0 � 1) in LogECMem.

5 MULTIPLE CHUNK FAILURE REPAIR
As stated in §4.1, LogECMem can repair the single-chunk failure by
simply performing fast degraded reads in DRAM nodes, but multi-
chunk failures sometimes occur in real systems. There are two cases
of multiple chunk failures: (1) multiple chunks of the same stripe
fail at the same time, like correlated failures [19, 22, 26], and (2) a
single node failure contains multiple failed chunks, each of which
belongs to different stripes. In this section, we first introduce a state-
of-the-art PL method in §5.1 and then propose efficient recovery for
the above two cases in §5.2 and §5.3 respectively.

5.1 Parity Logging with Reserved Space
To handle multi-chunk failures, we need to use more parity chunks
besides XOR parity ones, so LogECMem need to use log nodes
to do the multi-failure repair, but parity logging in HybridPL will
incur significant I/O overhead during repair at log nodes. The reason
is that during repair, PL may incur a lot of disk seeks to all parity
deltas, since PL may make multiple parity deltas of the same parity
chunk dispersed due to the append-only policy, so computing the
up-to-date parity chunk has to cost multiple random disk IOs.

A prior work [16] studies a state-of-the-art PL scheme – parity
logging with reserved space (PLR), which keeps parity deltas next
to the old parity chunks to mitigate disk seeks when computing
up-to-date parity chunks. Figure 9(a) shows that each parity chunk
and its corresponding parity deltas are placed in the contiguous
reserved space, e.g., for the parity chunk 2 + 23, its parity deltas
2 0 � 2 and 2 00 � 2 0 are together in the disk, thereby ensuring PLR can
compute the up-to-date parity chunk 2 00 + 23 via one disk seek by
(2 + 23) + (2 0 � 2) + (2 00 � 2 0) (see §2.2).

However, PLR needs to write parity deltas into different specific
reserved spaces of different stripes, thereby incurring heavy random
write disk IOs. As illustrated in Figure 9(a), % 02B log node of PLR
incurs eight disk writes for writing parity deltas in two different
reserved spaces. Thus, PLR trades write (update) performance for
the repair performance.

5.2 Repairing Multi-chunk Failures of a stripe
As stated in §5.1, PLR cannot be used in LogECMem, which aims
for high performance for both writes (updates) and repairs. Recall the
merging method of buffer logging in §4.3, we observe that multiple
parity deltas of the same stripes can be merged via linear combi-
nation. Thus, we can simply enhance PLR with merging (called
PLR-m), which merges parity deltas of the same stripe in memory
immediately before flushing in the disk. Figure 9(b) shows that PLR-
m incurs five disk IOs. It merges parity deltas three times, which
generate merged parity deltas 00+21 and 2+23 after the first merging,
2(1 0�1) and 2 00�2 after the second merging, and (000�0)+2(1 00�1)
after the third merging.

Obviously, PLR-m only can merge closely incoming parity deltas
due to the limited size of memory space. To address that, we use
a continuous disk space to do lazy merging (called parity logging
with merging, or PLM for short) instead, which first writes parity
deltas into an extra continuous disk space sequentially, and reads
them back for merging deltas of the same stripes later, and finally
writes merged deltas into specific parity chunks’ reserved spaces. In
this way, PLM can merge more parity deltas than PLR-m because of
the larger size of disk space, so as to reduce more disk IOs during
updates than PLR and PLR-m. Figure 9(c) shows that PLM only
incurs four disk IOs. It first flushes the buffer containing all parity
chunks and deltas into disks sequentially, reads them back via one
sequential disk read for merging, and writes two merged parity deltas
000 + 21 00 and 2 00 + 23 into specific reserved spaces.

5.3 Repairing A Single Node Failure
We now study how to realize the node repair. Straightforwardly, we
can perform multiple degraded reads to re-obtain all unavailable
chunks and migrate them to a new node.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

Incoming data stream: a, b, c, d, a’, c’, c’’, b’, a’’, b’’

(a) PLR’s P2 log node, 8 disk writes

2(b’’-b’)a’’-a’2(b’-b)a’-aa+2b c’’-c’c’-cc+2d

(b) PLR-m’s P2 log node, 5 disk writes

(a’’-a’)+
2(b’’-b’)2(b’-b)a'+2b c’’-cc+2d

a+2b, c+2d, a’-a c’-c, c’’-c’, 2(b’-b) a’’-a’, 2(b’’-b’)
1st merging 2nd merging 3rd merging

Continuous disk space Parity chunk with reserved space

(c) PLM’s P2 log node, 3 disk writes + 1 disk read

Lazy merging

a+2b, c+2d, a’-a, c’-c, c’’-c’, 2(b’-b), a’’-a’, 2(b’’-b’)  

a’’+b’ c’’+2d’

Flushing Read back

Write back

Figure 9: PLR, PLR-m and PLM in (2, 2) code. We assume 0
and 1, 2 and 3 form two stripes respectively, where the two
stripes’ second parity chunks 0 + 21 and 2 + 23 are stored in
one log node. Next, we update 0 to 00, 2 to 2 0, 2 0 to 2 00, 1 to 1 0, 00
to 000, and 1 0 to 1 00.

DRAM nodes repair: The straightforward way for repairing the
failed DRAM node will cause heavy bandwidth cost, as it traverses
the Stripe Index to re-construct : available chunks for all stripes, so
as to degraded read each stripe’s chunk that belongs to the failed
node. Besides, the existing DRAM nodes need to provide continuous
service via the proxy for requests, which may make DRAM nodes’
network congested. Actually, the bandwidth of disk nodes is only
served for writes and updates of parity chunks, which may not be
fully utilized and thus can be used to help repair single-node failure.

To this end, we propose a log-assist node repair to obtain one non
XOR parity chunk from the log node for each stripe to participate in
repairing the lost chunks of the failed node in parallel with another
: � 1 chunks retrieved from DRAM nodes. Note that similar to the
repair in §5.2, log nodes can read old parity chunks with all parity
deltas via one disk IO and re-compute the up-to-date parity chunks.
Log nodes repair: When incurring the log node failure, we can
also deploy log-assist node repair to accelerate node repair similar
to DRAM nodes repair, where we need to re-obtain the non XOR
parity chunk from one of the available log nodes instead.

6 EVALUATION
We describe LogECMem’s implementation (§6.1), provide testbed
and workloads configurations (§6.2), and show evaluation results
compared to in-place and full-stripe updates in terms of basic I/O,
updates, memory overhead and repair performance (§6.3).

6.1 Implementation
We build LogECMem atop the Memcached protocol [9] that is
widely used in academia and industry [3, 18, 41, 62], which is
implemented with about 1000 SLoC in C++ on Linux. In particular,
we use the memcached instance [9] (v1.4) to act as the DRAM node

and the Ubuntu server (v16.04) equipped with the Ext4 File System
to act the log node. Also, we extend LibMemcached [8] (v1.0.18)
in c with 100 SLoC as the proxy to manage DRAM nodes and log
nodes via consistent hashing [31] for efficient distribution.

LogECMem implements (:, A ) codes based on Reed-Solomon
codes [49], where we set (:, A ) to (6, 3) as in HDFS [46], (10, 4) as
in f4 [40], (12, 4) as in Azure [27], and (15, 3) as in Pelican [15]. We
also set :=16, 32, 64 and 128 with A=4 as the large-scale settings. We
accelerate encoding operations of Reed-Solomon codes via two Intel
ISA-L APIs [7]: ec_init_tables and ec_encode_data, which splits
each data chunks into slices and accelerates slice-based encoding by
pre-fetching slices ahead via the CPU cache.

In addition, we use dd command in the log nodes to create a large
empty file for each newly written parity chunk to realize the reserved
space in PLR, PLR-m and PLM, where the following parity deltas
of the parity chunk can be stored sequentially.

To show LogECMem’s performance improvements, we extend
Memcached and implement the erasure-coded update schemes in-
place and full-stripe updates. We call the Memcached implementa-
tion with in-place update scheme IPMem, and that with full-stripe
update scheme FSMem. Also, we deploy a traditional replication
way (called (A + 1)-way replication) that uses A replicas to ensure
data reliability for at most A failures, and vanilla Memcached without
erasure coding called Vanilla which has no reliability assurance.

6.2 Experimental Setup
Testbed and configurations: We conduct our experiments on Ama-
zon EC2 [2] in US-West (North California) with :+A +2 m5d.2xlarge
instances, which evaluates Vanilla, (A + 1)-way replication, IPMem,
FSMem and LogECMem in the cloud environment. : + A instances
represent the storage nodes including : + 1 DRAM nodes and A � 1
log nodes, and two instances represent the proxy and the client re-
spectively. Each DRAM node runs a memcached instance, and each
log node with Ubuntu-16.04 has a DRAM-based buffer for fast stor-
age and an additional Amazon EBS [1] volume to serve as a 1 TiB
disk. We report average results of experiments about the latency and
throughput over ten runs, and provide the variance of these results
due to fluctuating cloud network environment.
Workloads: We use YCSB [20] to generate workloads to evaluate
Vanilla, 5-way (or 4-way) replication, IPMem, FSMem, and Lo-
gECMem. We set the size of the key for each object around 20 bytes
by using the default setting in YCSB. We also set the size of the value
of an object as 1 KiB, 4 KiB and 16 KiB [34, 62], and we consider
each object as a data chunk for simplicity. we load LogECMem with
one million objects using write requests, so the total data sizes are
1 GiB, 4 GiB, and 16 GiB, respectively. We evaluate these systems

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

0

50

100

150

200

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

Vanilla 5−way
IPMem FSMem
LogECMem

0

50

100

150

200

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

Vanilla 5−way
IPMem FSMem
LogECMem

0

200

400

600

800

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

Vanilla 5−way
IPMem FSMem
LogECMem

0

200

400

600

800

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

Vanilla 5−way
IPMem FSMem
LogECMem

(a) Read latency (r:w = 95:5) (b) Read latency (r:w = 50:50) (c) Write latency (r:w = 95:5) (d) Write latency (r:w = 50:50)

21
0.

3

19
8.

6

15
6.

619
9.

4

18
1.

8

14
3.

8

20
4.

4

19
4.

0

15
3.

9

20
5.

1

19
4.

0

15
0.

7

20
3.

7

19
2.

4

15
1.

0

0
50

100
150
200
250
300
350

1KiB 4KiB 16KiB
Value Size

Th
ro

ug
hp

ut
 (1

03 op
s/

s) Vanilla
5−way

IPMem
FSMem

LogECMem

20
3.

5

19
1.

1

15
9.

9

13
0.

2

97
.3

84
.3

16
4.

2

15
4.

6

13
8.

2

16
3.

5

15
5.

2

13
9.

4

16
4.

0

15
6.

5

14
0.

4

0
50

100
150
200
250
300
350

1KiB 4KiB 16KiB
Value Size

Th
ro

ug
hp

ut
 (1

03 op
s/

s) Vanilla
5−way

IPMem
FSMem

LogECMem

18
2.

4

18
9.

1

24
5.

3

12
06

.3

12
91

.0 17
21

.2

12
14

.9

12
93

.1 17
33

.0

12
20

.7

13
03

.3 17
28

.7

0
500

1000
1500
2000
2500
3000

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

5−way
IPMem

FSMem
LogECMem

18
4.

6

19
1.

9

23
0.

4

11
89

.6

13
92

.5 17
00

.8

11
99

.6

13
87

.8 17
11

.0

12
04

.0

13
94

.2 17
16

.0

0
500

1000
1500
2000
2500
3000

1KiB 4KiB 16KiB
Value Size

La
te

nc
y 

(µ
s)

5−way
IPMem

FSMem
LogECMem

(e) Throughput (r:w = 95:5) (f) Throughput (r:w = 50:50) (g) Degraded read latency (r:w = 95:5) (h) Degraded read latency (r:w = 50:50)

Figure 10: Experiment 1: Comparison of read, write, degraded read latency, and throughput with different workloads in (10, 4) code.

with one million requests via YCSB with different read/write (i.e.,
A :F) ratios including 95%:5% (read-mostly) and 50%:50%, and dif-
ferent read/update (i.e., A :D) ratios including 95%:5% (update-light),
80%:20%, 70%:30% and 50%:50% (update-heavy) [18, 58, 59, 62]. We
also set these requests to follow the default Zipf distribution in YCSB
to mimic the popularity distribution.

6.3 Performance

Experiment 1 (Basic requests performance): We compare Vanilla,
5-way replication, IPMem, FSMem, and LogECMem with PLM
in terms of read, write, and degraded read latency, and throughput
(in the number of operations per second). We consider different
value sizes and read/write ratios. Figure 10(a) and (b) show that Lo-
gECMem, IPMem and FSMem have similar read latency as Vanilla
and 5-way replication. Figure 10(c) and (d) show that LogECMem,
IPMem and FSMem have similar write latency for read-mostly and
write-heavy workloads, but all of them incur higher write latency
compared to Vanilla due to a long I/O path for the additional encod-
ing operation. Also, 5-way replication needs to write multiple copies
to the storage system and incurs significant write latency, which
is higher than that of LogECMem, IPMem, FSMem and Vanilla.
Figure 10(e) and (f) show that the throughputs of LogECMem,
IPMem, FSMem and 5-way replication have a small degradation
compared to Vanilla, since Vanilla does not perform additional en-
coding for parity chunks (as LogECMem, IPMem and FSMem) nor
store multiple replicas (as 5-way replication). Here, although Vanilla
has similar and even better read, write and throughput performance
compared to LogECMem, IPMem and FSMem, it does not provide
data availability. Thus, we do not consider Vanilla in the following
experiments.

Figure 10(g) and (h) LogECMem keeps the similar degraded
read latency to IPMem and FSMem, since all of them re-obtain
the object belongs to the unavailable chunk in the same way via
retrieving and decoding the available chunks stored in DRAM nodes
of the same stripe. It addresses the repair performance degradation of
disk-oriented parity logging, which is consistent with our theoretical
findings in §3.1. Note that 5-way replication has a low degraded read

latency compared to others since its degraded read operation is just
to read another replica triggered by the failed read operation.

Experiment 2 (Update latency): We compare 5-way (or 4-way)
replication, IPMem, FSMem and LogECMem with PLM in terms
of update latency. We consider different (:, A ) codes and read/update
ratios. Figure 11 shows that LogECMem outperforms IPMem be-
cause the former mitigates the number of parity reads from A to one
during updates, since it only needs to read the XOR parity chunk
back for in-place update. Further, IPMem in A = 4 (e.g., (10, 4) code)
incurs higher update latency than that in A = 3 (e.g., (6, 3) code),
since the former needs to update one more parity chunk than the
latter; similarly, LogECMem in A = 4 also outperforms that in A = 3.
For example, compared to IPMem in Figure 11(a) in A = 3 and
(b) in A = 4, we see LogECMem reduces up to 32.7% and 37.8%,
when A :D = 70%:30%, respectively. Figure 11(c) and (d) have similar
results.

Also, we see that LogECMem outperforms FSMem in update-
light scenarios (i.e., A :D = 95%:5%) by 58.0%, 42.4%, 37.8% and
37.3% in (6, 3), (10, 4), (12, 4), and (15, 3) codes respectively. The
reason is that in the update-light scenarios, most of the updated
stripes in FSMem may have only one new data chunk, thus leading
to heavy re-computing overhead (See Observation 1 in § 2.3). When
the update ratio becomes higher (i.e., A :D = 80%:20%) we see that
compared to FSMem, LogECMem performs worse in Figure 11(a)
and (b) (when : = 6 and 10), but better in Figure 11(c) and (d) (when
: = 12 and 15). The reason is that for a larger : , the average number
of new chunks per stripe will be fewer, which means that FSMem
has to retrieve more active unchanged data chunks of those stripes
to re-compute the new parity chunks. That can be more critical for
even larger : in the wide stripe [11, 25]. When the update ratio
continues to increase (i.e., A :D = 50%:50%), FSMem outperforms
LogECMem in update-heavy scenarios, but incurs heavy memory
overhead. Besides, although replication has a low update latency
compared to the others in different (:, A ) codes and read/update
ratios, it incurs significant memory overhead (See Experiment 3 and
4), which is unaffordable.

Experiment 3 (Memory consumption): We compare 5-way (or
4-way) replication, IPMem, FSMem and LogECMem with PLM

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

0

300

600

900

1200

1500

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

4−way IPMem
FSMem LogECMem

0

300

600

900

1200

1500

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

0

300

600

900

1200

1500

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

0

300

600

900

1200

1500

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

4−way IPMem
FSMem LogECMem

(a) (6, 3) code (b) (10, 4) code (c) (12, 4) code (d) (15, 3) code

Figure 11: Experiment 2: Comparisons of update latency in different (:, A ) codes and read/update ratios with 4 KiB value size.

16
.0

16
.0

16
.0

16
.0

5.
7

5.
7

5.
7

5.
7

6.
0 6.
9 7.
5 8.
7

4.
5

4.
5

4.
5

4.
5

0

10

20

30

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

4−way IPMem
FSMem LogECMem

20
.0

20
.0

20
.0

20
.0

5.
3

5.
3

5.
3

5.
3

5.
6 6.
5 7.
0 8.
1

4.
2

4.
2

4.
2

4.
2

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)
5−way IPMem
FSMem LogECMem

20
.0

20
.0

20
.0

20
.0

5.
1

5.
1

5.
1

5.
1

5.
4 6.
2 6.
7 7.
8

4.
1

4.
1

4.
1

4.
1

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

5−way IPMem
FSMem LogECMem

16
.0

16
.0

16
.0

16
.0

4.
6

4.
6

4.
6

4.
6

4.
8 5.
5 6.
0 7.
0

4.
1

4.
1

4.
1

4.
1

0

10

20

30

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

4−way IPMem
FSMem LogECMem

(a) (6, 3) code (b) (10, 4) code (c) (12, 4) code (d) (15, 3) code

Figure 12: Experiment 3: Comparisons of memory overhead in different (:, A ) codes and read/update ratios with 4 KiB value size.

0

500

1000

1500

2000

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

0

500

1000

1500

2000

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

0

500

1000

1500

2000

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

0

500

1000

1500

2000

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

5−way IPMem
FSMem LogECMem

(a) (16, 4) code (b) (32, 4) code (c) (64, 4) code (d) (128, 4) code

20
.0

20
.0

20
.0

20
.0

5.
0

5.
0

5.
0

5.
0

5.
3 6.
1 6.
6 7.
7

4.
1

4.
1

4.
1

4.
1

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

5−way IPMem
FSMem LogECMem

20
.0

20
.0

20
.0

20
.0

4.
5

4.
5

4.
5

4.
5

4.
6

4.
9

5.
2

5.
6

4.
1

4.
1

4.
1

4.
1

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

5−way IPMem
FSMem LogECMem

20
.0

20
.0

20
.0

20
.0

4.
2

4.
2

4.
2

4.
2

4.
2

4.
4

4.
5

4.
7

4.
1

4.
1

4.
1

4.
1

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

5−way IPMem
FSMem LogECMem

20
.0

20
.0

20
.0

20
.0

4.
1

4.
1

4.
1

4.
1

4.
1

4.
2

4.
2

4.
4

4.
0

4.
0

4.
0

4.
0

0

10

20

30

40

95:5 80:20 70:30 50:50
Read/update ratiosM

em
or

y 
O

ve
rh

ea
d 

(G
iB

)

5−way IPMem
FSMem LogECMem

(e) (16, 4) code (f) (32, 4) code (g) (64, 4) code (h) (128, 4) code

Figure 13: Experiment 4: Repeating Experiment 2 and 3 with a large : , where : = 16, 32, 64 and 128 with A = 4.

in terms of memory overhead including data and parity chunks. We
consider different (:, A ) codes and read/update ratios. Figure 12
shows that LogECMem reduces significant memory overhead up
to 79.3% compared to 5-way replication (when in (12, 4) code), be-
cause the former stores 4 parity chunks for 12 data chunks while
the latter stores 4 replicas for each object; up to 22.2% compared
to IPMem (when in (6, 3) code), because it only maintains XOR
parity chunks in DRAM nodes, and stores remaining parity chunks
and parity deltas in disks instead. Further, LogECMem reduces
memory overhead up to 49.0% compared to FSMem (when in (6, 3)
code), since FSMem additionally keeps multiple versions of old
data and parity chunks in DRAMs. We also see that LogECMem
outperforms IPMem and FSMem when the update ratio increases,
which is consistent with the Observation 2 in § 2.3.

Experiment 4 (Performance in a large-scale setting): We repeat
the experiment 2 and 3 in a large-scale setting with a large :. Fig-
ure 13(a)⇠(d) confirm that LogECMem outperforms IPMem similar
to Experiment 2. Further, we find that with a large :, LogECMem
outperforms FSMem in A :D=95%:5%, 80%:20% and A :D=70%:30%,
where in 70%:30% the former reduces update latency by 1.9%, 19.0%,

36.4% and 29.4% in (16, 4), (32, 4), (64, 4) and (128, 4) codes, re-
spectively. Figure 13(e)⇠(f) also confirm that LogECMem has the
lowest memory overhead similar to Experiment 3, which reduces up
to 79.8% (when in (128, 4) code), 17.2% (when in (16, 4) code), and
46.0% (when in (16, 4) code) compared to 5-way replication, IPMem
and FSMem, respectively.

Figure 12 and Figure 13(e)⇠(f) show that the memory overhead
of 5-way (or 4-way) replication is much more than that of the others.
Here, although (A + 1)-way replication has decent read, degraded
read and update performance compared to IPMem, FSMem and
LogECMem, it does incur significant memory overhead. Thus, we
do not consider (A + 1)-way replication in the following experiments.

Experiment 5 (Disk IOs during updates): We compare PL, PLR,
PLR-m and PLM schemes of LogECMem in terms of the number
of disk IOs during updates caused by buffer logging. We consider
different (:, A ) codes and read/update ratios. Figure 14(a) shows that
all of PLR, PLR-m and PLM incur more disk IOs than PL when
flushing buffers in all four read/update ratios. The reason is that PL
flushes the full buffer containing all parity chunks and deltas via
one disk IO, but PLR, PLR-m and PLM need to write parity chunks

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

1.
5E

+0
2

6.
2E

+0
2

9.
2E

+0
2

1.
5E

+0
3

1.
6E

+0
5 6.
3E

+0
5

9.
5E

+0
5 1.

6E
+0

6

1.
3E

+0
6

7.
9E

+0
5

5.
3E

+0
5

1.
3E

+0
5

1.
2E

+0
5

4.
9E

+0
5

7.
3E

+0
5 1.
2E

+0
6

0.5M

1M

1.5M

2M

2.5M

95:5 80:20 70:30 50:50
Read/update ratios

# 
of

 d
is

k 
IO

s

PL PLR PLR−m PLM

1E
+0

2

1.
5E

+0
2

1.
5E

+0
2

1E
+0

2

1E
+0

5 1.
6E

+0
5

1.
6E

+0
5

1E
+0

5

8.
7E

+0
4

1.
3E

+0
5

1.
3E

+0
5

8.
7E

+0
4

8.
1E

+0
4

1.
2E

+0
5

1.
2E

+0
5

8E
+0

4

100K

200K

300K

(6,3) (10,4) (12,4) (15,3)
(k,r) codes

# 
of

 d
is

k 
IO

s

PL PLR PLR−m PLM

15
91

.6

17
47

.8

18
64

.5

21
16

.2

13
73

.3

13
76

.1

13
75

.7

13
73

.5

13
58

.3

13
45

.8

13
26

.7

13
60

.9

13
55

.5

13
41

.8

13
24

.0

13
56

.8

0
500

1000
1500
2000
2500
3000

95:5 80:20 70:30 50:50
Read/update ratios

La
te

nc
y 

(µ
s)

PL PLR PLR−m PLM

10
47

.3

15
91

.6

18
64

.2 22
72

.3

84
6.

2

13
74

.7

16
39

.0 20
35

.3

83
4.

0

13
52

.5 16
26

.8 20
03

.1

83
1.

2

13
49

.3

16
18

.1 19
97

.7

0
500

1000
1500
2000
2500
3000

(6,3) (10,4) (12,4) (15,3)
(k,r) codes

La
te

nc
y 

(µ
s)

PL PLR PLR−m PLM

(a) (10, 4) code (b) Impact of codes in r:u =95:5 (c) Read/update ratios in (10, 4) code (d) (:, A ) code in r:u = 95:5

Figure 14: Experiment 5 and Experiment 6: Comparisons of disk IOs during updates and multiple chunk failures repair performance
in different (:, A ) codes and read/update ratios with 4 KiB value size.

22
.7

14
.1

11
.8

9.
5

26
.9

15
.6

12
.9

10
.2

0

10

20

30

40

(6,3) (10,4) (12,4) (15,3)
(k,r) codesN

od
e 

R
ep

ai
r T

ho
ug

hp
ut

 (M
iB

/s
)

LogECMem w/o log−assist LogECMem w/ log−assist

Figure 15: Experiment 7: Comparisons of node repair perfor-
mance in different (:, A ) codes with 4 KiB value size.

and deltas into specific reserved spaces one by one, thus resulting
in heavy disk IOs. Figure 14(b) shows that PLM reduces disk IOs
compared to PLR up to 23.7% (when in (15, 3) code) in A :D = 95%:5%,
because PLM can merge multiple parity deltas of the same stripe
via linear combination. Also, PLM reduces disk IOs compared to
PLR-m up to 8.2% (when in (15, 3) code) in A :D = 95%:5%, because
PLM can merge multiple parity deltas via continuous disk space
rather than PLR-m that has limited memory space. Note that the
number of disk IOs increases with A and update ratios since both of
them generate more parity deltas.
Experiment 6 (Multiple chunk failures repair performance): We
compare PL, PLR, PLR-m and PLM schemes in LogECMem in
terms of degraded read latency when incurring multiple chunk fail-
ures, which is equal to the average latency of all degraded reads. We
consider different (:, A ) codes and read/update ratios. We mimic two
chunks failures by manually killing memcached processes in their
DRAM nodes. Figure 14(c) and (d) show that all of PLR, PLR-m and
PLM have the similar degraded read performance but outperform PL.
The reason is that PL’s degraded reads have to incur many random
disk reads to retrieve all old parity chunks and deltas to compute
the up-to-date parity chunks, while PLR, PLR-m and PLM leverage
the reserved space to reduce the number of the disk reads. Note that
PLM performs a little better than PLR and PLR-m, since PLM has
fewer deltas stored in the reserved space after merging. For example,
PLM incurs lower degraded read latency up to 35.9% (when A :D =
50%:50%) compared to PL. In addition, we see that the improvement
of PLM decreases with : from 20.3% (when : = 6) to 11.8% (when
: = 15), because when : becomes large, retrieving chunks from
DRAM nodes dominates the degraded read operation rather than
parity chunks in the disk.
Experiment 7 (Node repair performance): We compare within
and without log-assist method in LogECMem in terms of node
repair performance , which is equal to the storage capacity of a node
over the repair time. Here, we consider the failed node is DRAM-
based, which stores data and XOR parity chunks. Based on the

Ϭ

ϮϬϬ

ϰϬϬ

ϲϬϬ

ϴϬϬ

ϭϬϬϬ

ϭϮϬϬ

ϭϰϬϬ

ϭϲϬϬ

ϯ ϰ ϱ ϲ ϳ ϴ ϵ

>Ă
ƚĞ
ŶĐ
Ǉ�
;ʅ
ƐͿ

DĞŵŽƌǇ�KǀĞƌŚĞĂĚ�;'ŝ�Ϳ

/WDĞŵͲ;ϲ͕ϯͿ /WDĞŵͲ;ϭϬ͕ϰͿ

/WDĞŵͲ;ϭϲ͕ϰͿ /WDĞŵͲ;ϯϮ͕ϰͿ

/WDĞŵͲ;ϲϰ͕ϰͿ /WDĞŵͲ;ϭϮϴ͕ϰͿ

&^DĞŵͲ;ϲ͕ϯͿ &^DĞŵͲ;ϭϬ͕ϰͿ

&^DĞŵͲ;ϭϲ͕ϰͿ &^DĞŵͲ;ϯϮ͕ϰͿ

&^DĞŵͲ;ϲϰ͕ϰͿ &^DĞŵͲ;ϭϮϴ͕ϰͿ

>ŽŐ��DĞŵͲ;ϲ͕ϯ˅ >ŽŐ��DĞŵͲ;ϭϬ͕ϰͿ

>ŽŐ��DĞŵͲ;ϭϲ͕ϰͿ >ŽŐ��DĞŵͲ;ϯϮ͕ϰͿ

>ŽŐ��DĞŵͲ;ϲϰ͕ϰͿ >ŽŐ��DĞŵͲ;ϭϮϴ͕ϰͿ

>ŽŐ��DĞŵͲ;ϭϲ͕ϰͿ

>ŽŐ��DĞŵͲ;ϭϬ͕ϰͿ

/WDĞŵͲ;ϲ͕ϯͿ

&^DĞŵ ŝŶ�ϵϱ͗ϱ
&^DĞŵ ŝŶ�ϴϬ͗ϮϬ

&^DĞŵ ŝŶ�ϳϬ͗ϯϬ

&^DĞŵ ŝŶ�ϱϬ͗ϱϬ

/WDĞŵͲ;ϯϮ͕ϰͿ

>ŽŐ��DĞŵͲ;ϯϮ͕ϰͿ
>ŽŐ��DĞŵͲ;ϲ͕ϯͿ>ŽŐ��DĞŵͲ;ϲϰ͕ϰͿ

>ŽŐ��DĞŵͲ;ϭϮϴ͕ϰͿ

/WDĞŵͲ;ϲϰ͕ϰͿ

/WDĞŵͲ;ϭϮϴ͕ϰͿ
/WDĞŵͲ;ϭϬ͕ϰͿ

/WDĞŵͲ;ϭϲ͕ϰͿ

Figure 16: Tradeoff analysis of memory overhead and update
latency in different (:, A ) codes and read/update ratios with 4
KiB value size.

workload, we set the total data size to 4 GiB (i.e., one million 4 KiB
value size objects), so the total memory overhead of the repaired
node equals 4

: GiB. Figure 15 shows that LogECMem within log-
assist method outperforms that without one by up to 18.2% (when
in (6, 3) code) since the proxy can pre-repair the non XOR parity
chunks via the free bandwidth of log nodes. Note that the node repair
performance decreases with :, which is similar to Experiment 6.

6.4 Tradeoff Analysis
Figure 16 plots the memory overhead and update latency of IP-
Mem, FSMem and LogECMem for different (:, A ) codes (i.e., (6, 3),
(10, 4), (16, 4), (32, 4), (64, 4) and (128, 4) codes) and read/update
ratios, where each point represents a trade-off between memory
overhead and update latency. Note that LogECMem has very close
update latencies for different update ratios under the same (:, A )
code as well as IPMem, while FSMem has different update laten-
cies for different update ratios under the same (:, A ) code. Overall,
LogECMem’s curves are closer to the origin than IPMem’s and FS-
Mem’s, indicating that LogECMem has a better trade-off between
update latency and memory overhead than IPMem and FSMem,
which can be more significant with a larger :.

Specifically, Table 3 gives a thorough comparison of IPMem,
FSMem, and LogECMem in terms of update latency as well as
memory overhead under different : and read/update ratios. Here,
we use “best”, “low” and “high” outside the brackets to indicate
the comparison results of update latency between IPMem, FSMem
and LogECMem, and the results inside the brackets for memory
overhead. First, we see that when : is not large (: = 6, 10, 12 and
15), FSMem often has the best update performance, due to its direct
parity updates without any reads, while LogECMem requires par-
ity reads which limit its update performance (see §2.2). However,
when : becomes large (: � 16), LogECMem has more cases with

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



SC ’21, November 14–19, 2021, St. Louis, MO, USA Liangfeng Cheng, Yuchong Hu, et al.

r:u ratios IPMem FSMem LogECMem

k = 6
and 10

95:5 low (low) high (high) best (best)
80:20 high (low) best (high) low (best)
70:30 high (low) best (high) low (best)
50:50 high (low) best (high) low (best)

k = 12
and 15

95:5 low (low) high (high) best (best)
80:20 high (low) low (high) best (best)
70:30 high (low) best (high) low (best)
50:50 high (low) best (high) low (best)

k = 16,
32, 64,
and 128

95:5 low (low) high (high) best (best)
80:20 high (low) low (high) best (best)
70:30 high (low) low (high) best (best)
50:50 high (low) best (high) low (best)

Table 3: Comparison results of IPMem, FSMem and Lo-
gECMem in terms of “update latency (memory overhead)”.

the best update performance, since it still maintains stable update
performance (see Figure 16) due to its delta-based update scheme
regardless of :, while FSMem’s update performance degrades sig-
nificantly due to its many parity re-computations during GC under a
large : (see §2.2.1). In addition, LogECMem always has the lowest
memory overhead due to its HybridPL architecture (see §3.3).

7 ORIGINALITIES AND LIMITATIONS
Originalities: Although full-stripe update is state-of-the-art in in-
memory KV stores for fast erasure-coded updates [34], we are the
first to discover that its update performance will be degraded se-
riously in a large-scale setting (i.e., a large :), while delta-based
update schemes suit well with the large-scale setting (§2.2.1 and
Experiment 4), since the delta is generated regardless of : (§2.1).

In addition, parity logging is state-of-the-art in delta-based up-
date schemes [16], but we are the first to successfully deploy parity
logging under in-memory KV stores, via addressing the major chal-
lenge that comes from the performance gap between memory and
log nodes, with the help of our new architecture HybridPL (§3).

Further, we propose three new methods that improve existing
works for better performance: (1) merge-based buffer logging (§4.3)
that enables parity deltas to be merged in the classical buffer logging
approach [42], (2) parity logging with merging, i.e., PLM (§5.2)
for better update and repair performance than the state-of-the-art
scheme PLR [16], and (3) log-assist node repair that leverages both
memory and disk nodes (§5.3) for better node repair performance
than those that only use memory nodes [62].
Limitations: LogECMem mixes in-place update and parity log-
ging, both of which use delta for parity updates, thereby leading to
limitations in some cases. (1) Update-heavy cases: In update-heavy
scenarios (e.g., 50%:50%), LogECMem incurs too many read IOs
for old data chunks to compute delta and thus performs worse than
FSMem in terms of update latency. (2) Slow-read cases: For LSM-
tree based KV stores which have the read amplification problem [47],
LogECMem’s delta-based update performance may be degraded
due to the slow reads of old data chunks to compute delta.

8 RELATED WORK
Erasure coding in distributed storage: Erasure coding has been
widely adopted in distributed file systems [15, 16, 25–27, 33, 36, 39,

46, 50, 63] and KV stores [17, 18, 34, 38, 48, 54, 57, 59, 60, 62].
Most of studies mainly focus on repair performance [26, 27, 33,
39, 50, 54, 55], improving storage efficiency [40, 46, 62], memory
management [26, 38, 48, 59, 62], scaling performance [18, 28, 57,
63], and update performance [16, 34, 53, 59].

To improve update performance in erasure-coded storage, prior
studies deploy the in-place update to minimize extra storage over-
head [12, 62] and form new stripes instead of updates to reduce net-
work bandwidth [17, 34, 43]. Specifically, BCStore [34] organizes
the newly updated chunks into new stripes, marks old data chunks
as invalid and reclaims them via GC. Also, Parity logging [56] is a
well-known approach of mitigating parity update traffic by eliminat-
ing reads of parity chunks and recording parity deltas to log devices.
CodFS [16] performs the parity logging by placing parity deltas
next to original parity chunks to reduce disk seeks during recovery.
In contrast, LogECMem realizes a novel HybridPL architecture,
which takes a hybrid of in-place update for data and XOR parity
chunks and parity logging for the remaining parity chunks.

In-memory KV stores: Many studies in recent years worked on
in-memory KV stores [9, 10, 13, 18, 21, 37, 41, 42, 48, 57, 59, 62],
which focus on different aspects: memory efficiency [48, 57, 59, 62],
availability [18, 34, 62], scaling [13, 18, 41], and load balancing
[23, 24, 48].

Some closely related studies to ours include: Cocytus [62], which
uses a hybrid scheme to use primary-backup replication for small-
sized and scattered data and only apply erasure coding to relatively
large data; ECHash [18] combines the consistent hashing with era-
sure coding, decouples the relation between data chunks and nodes
to significantly reduced parity updates during scaling nodes; Fat-
cache [5] leverages SSDs to expend its storage capacity based on
Memcached [9] for a higher basic request performance. In contrast,
LogECMem stores data and parity in both DRAM and log nodes,
which stores data and XOR parity chunks in DRAM node for high
repair performance, and stores the other parity chunks and deltas in
disks of log nodes for update efficiency.

9 CONCLUSION AND FUTURE WORK
We propose HybridPL, a novel parity logging based architecture that
takes a hybrid of in-place updates for data and XOR parity chunks
in DRAMs and log-based updates for the remaining parity chunks
in logs, such that the memory cost and performance of updates and
single-failure repairs can be balanced well. We prototype HybridPL
as LogECMem atop Memcached, and design two schemes (PLM
and log-assist) to improve multi-failure repair performance. Cloud-
based experiments demonstrate the efficiency of LogECMem in
basic I/O, updates and repair with low memory overhead.

We first plan to investigate how LogECMem can be applied to
NVRAM-based and SSD-based KV stores and parallel file systems.
We also plan to re-organize HybridPL’s architecture to proactively
identify the popularity of incoming data for better update efficiency.

Acknowledgments: We thank our shepherd and the anonymous re-
viewers for their comments. This work was supported by the National
Natural Science Foundation of China (61872414), Key Laboratory
of Information Storage System Ministry of Education of China. The
corresponding author is Yuchong Hu.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



LogECMem: Coupling Erasure-Coded In-Memory Key-Value Stores with Parity Logging SC ’21, November 14–19, 2021, St. Louis, MO, USA

REFERENCES
[1] Amazon Elastic Block Store. http://aws.amazon.com/ebs.
[2] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2.
[3] Amazon Elasticache. https://docs.aws.amazon.com/elasticache.
[4] Ddr4 sdram. https://en.wikipedia.org/wiki/DDR4_SDRAM.
[5] Fatcache. https://github.com/twitter/fatcache.
[6] Hard disk drive performance characteristics. https://en.wikipedia.org/wiki/Hard_

disk_drive_performance_characteristics.
[7] Intel ISA-L. https://github.com/intel/isa-l.
[8] LibMemcached. https://libmemcached.org.
[9] Memcached. https://memcached.org.

[10] Twittercache. https://github.com/alexpghayes/twittercache.
[11] Vastdata. https://vastdata.com/providing-resilience-efficiently-part-ii/.
[12] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for

storage in a distributed system. In Proc. of IEEE/IFIP DSN, pages 336–345. IEEE,
2005.

[13] A. Anwar, Y. Cheng, H. Huang, J. Han, H. Sim, D. Lee, F. Douglis, and A. R. Butt.
Bespokv: Application tailored scale-out key-value stores. In Proc. of IEEE SC,
pages 14–29. IEEE, 2018.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis
of a large-scale key-value store. In Proc. of ACM SIGMETRICS, pages 53–64,
2012.

[15] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper,
S. Legtchenko, A. Ogus, E. Peterson, and A. Rowstron. Pelican: A building
block for exascale cold data storage. In Proc. of USENIX OSDI, 2014.

[16] J. C. Chan, Q. Ding, P. P. Lee, and H. H. Chan. Parity logging with reserved
space: Towards efficient updates and recovery in erasure-coded clustered storage.
In Proc. of USENIX FAST, pages 163–176, 2014.

[17] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips. Giza: Erasure
coding objects across global data centers. In Proc. of USENIX ATC, pages 539–
551, 2017.

[18] L. Cheng, Y. Hu, and P. P. Lee. Coupling decentralized key-value stores with
erasure coding. In Proc. of ACM SoCC, pages 377–389, 2019.

[19] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer. Tiered replication:
A cost-effective alternative to full cluster geo-replication. In Proc. of USENIX
ATC, pages 31–43, 2015.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with YCSB. In Proc. of ACM SoCC, pages 143–154,
2010.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. of ACM SOSP, pages 205–220, 2007.

[22] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A. Truong, L. Barroso, C. Grimes,
and S. Quinlan. Availability in Globally Distributed Storage Systems. In Proc. of
USENIX OSDI, Oct 2010.

[23] Y.-J. Hong and M. Thottethodi. Understanding and mitigating the impact of load
imbalance in the memory caching tier. In Proc. of ACM SoCC, page 13, 2013.

[24] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang, and Z. Wang. LAMA:
Optimized locality-aware memory allocation for key-value cache. In Proc. of
USENIX ATC, pages 57–69, 2015.

[25] Y. Hu, L. Cheng, Q. Yao, P. P. C. Lee, W. Wang, and W. Chen. Exploiting
combined locality for wide-stripe erasure coding in distributed storage. In Proc.
of USENIX FAST, Feb. 2021.

[26] Y. Hu, X. Li, M. Zhang, P. P. Lee, X. Zhang, P. Zhou, and D. Feng. Optimal repair
layering for erasure-coded data centers: From theory to practice. ACM Trans. on
Storage, 13(4):33, 2017.

[27] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin.
Erasure Coding in Windows Azure Storage. In Proc. of USENIX ATC, Jun 2012.

[28] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An efficient scaling
scheme for RS-coded storage clusters. IEEE Trans. on Parallel and Distributed
Systems, 26(6):1704–1717, 2015.

[29] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, and L. Zhang. Under-
standing big data analytics workloads on modern processors. IEEE Trans. on
Parallel and Distributed Systems, 28(6):1797–1810, 2017.

[30] C. Jin, D. Feng, H. Jiang, and L. Tian. Raid6l: A log-assisted raid6 storage
architecture with improved write performance. In Proc. of IEEE MSST, pages 1–6.
IEEE, 2011.

[31] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web. In Proc. of ACM STOC, pages 654–663, 1997.

[32] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[33] R. Li, X. Li, P. P. Lee, and Q. Huang. Repair pipelining for erasure-coded storage.
In Proc. of USENIX ATC, pages 567–579, 2017.

[34] S. Li, Q. Zhang, Z. Yang, and Y. Dai. BCStore: Bandwidth-efficient in-memory
KV-store with batch coding. In Proc. of IEEE MSST, 2017.

[35] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. Algorithmic improve-
ments for fast concurrent cuckoo hashing. In Proc. of ACM EuroSys, page 27,
2014.

[36] X. Li, R. Li, P. P. Lee, and Y. Hu. Openec: Toward unified and configurable erasure
coding management in distributed storage systems. In Proc. of USENIX FAST,
pages 331–344, 2019.

[37] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic approach
to fast in-memory key-value storage. In Proc. of USENIX NSDI, pages 429–444,
2014.

[38] W. Litwin, R. Moussa, and T. Schwarz. LH* RS: A highly-available scalable
distributed data structure. ACM Trans. on Database Systems, 30(3):769–811,
2005.

[39] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-parallel-repair (PPR): a
distributed technique for repairing erasure coded storage. In Proc. of ACM Eurosys,
page 30. ACM, 2016.

[40] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, et al. f4: Facebook’s Warm BLOB Storage System. In
Proc. of USENIX OSDI, pages 383–398, 2014.

[41] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, et al. Scaling Memcache at Facebook. In Proc. of
USENIX NSDI, pages 385–398, 2013.

[42] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, et al. The case for ramclouds:
scalable high-performance storage entirely in dram. ACM SIGOPS Operating
Systems Review, 43(4):92–105, 2010.

[43] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly. The Quantcast
File System. Proc. of VLDB Endowment, 6(11):1092–1101, 2013.

[44] J. S. Plank. Erasure codes for storage systems: A brief primer. The magazine of
USENIX & SAGE, 38(6):44–50, 2013.

[45] R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned
tables. In Proc. of USENIX OSDI, volume 10, pages 293–306, 2010.

[46] R. Li, Z. Zhang, K. Zheng, and A. Wang. Progress report: Bringing erasure
coding to apache hadoop. https://blog.cloudera.com/blog/2016/02/progress-report-
bringing-erasure-coding-to-apache-hadoop, 2016.

[47] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. Pebblesdb: Building
key-value stores using fragmented log-structured merge trees. In Proc. of ACM
SOSP, pages 497–514, 2017.

[48] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran. EC-Cache:
Load-balanced, low-latency cluster caching with online erasure coding. In Proc.
of USENIX OSDI, pages 401–417, 2016.

[49] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics, 1960.

[50] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur. XORing Elephants: Novel Erasure Codes for Big Data.
In Proc. of ACM VLDB Endowment, pages 325–336, 2013.

[51] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What does an
MTTF of 1,000,000 Hours Mean to You? In Proc. of USENIX FAST, page 1, 2007.

[52] D. Shankar. Designing high-performance, resilient and heterogeneity-aware key-
value storage for modern hpc clusters. IEEE SC Doctoral Showcase, 2018.

[53] Z. Shen and P. P. Lee. Cross-rack-aware updates in erasure-coded data centers. In
Proc. of ICPP, pages 1–10, 2018.

[54] H. Shi and X. Lu. Inec: fast and coherent in-network erasure coding. In Proc. of
IEEE SC, pages 924–940. IEEE Computer Society, 2020.

[55] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin. Lazy means smart:
Reducing repair bandwidth costs in erasure-coded distributed storage. In Proc. of
ACM SYSTOR, pages 1–7. ACM, 2014.

[56] D. Stodolsky, G. Gibson, and M. Holland. Parity logging overcoming the small
write problem in redundant disk arrays. ACM SIGARCH Computer Architecture
News, 21(2):64–75, 1993.

[57] K. Taranov, G. Alonso, and T. Hoefler. Fast and strongly-consistent per-item
resilience in key-value stores. In Proc. of ACM EuroSys, page 39, 2018.

[58] J. Yang, Y. Yue, and K. Rashmi. A large scale analysis of hundreds of in-memory
cache clusters at twitter. In Proc. of USENIX OSDI, pages 191–208, 2020.

[59] M. M. Yiu, H. H. Chan, and P. P. Lee. Erasure coding for small objects in
in-memory KV storage. In Proc. of ACM SYSTOR, page 14, 2017.

[60] Y. Yu, R. Huang, W. Wang, J. Zhang, and K. B. Letaief. Sp-cache: Load-balanced,
redundancy-free cluster caching with selective partition. In Proc. of IEEE SC,
pages 1–13. IEEE, 2018.

[61] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proc. of USENIX NSDI, pages 15–28, 2012.

[62] H. Zhang, M. Dong, and H. Chen. Efficient and available in-memory kv-store with
hybrid erasure coding and replication. In Proc. of USENIX FAST, pages 167–180,
2016.

[63] X. Zhang, Y. Hu, P. P. Lee, and P. Zhou. Toward optimal storage scaling via
network coding: From theory to practice. In Proc. of IEEE INFOCOM, pages
1808–1816, 2018.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
This appendix describes the information of the prototype and exper-
imental details of the SC’21 paper “LogECMem: Coupling Erasure-
Coded In-Memory Key-Value Stores with Parity Logging”. More
precisely, we explain how to prepare, install, con�gure and bench-
mark LogECMem to re-run the experiments in this paper.

ARTIFACT DESCRIPTION
Our LogECMem is tested on Ubuntu 16.04 and now available at
https://github.com/yuchonghu/logecmem.

Preparation
These are the required libraries that users need to download
separately, e.g., gcc (v5.18.7), g++ (v5.4.0); make (v4.1), cmake
(v3.5.1), autogen (v5.18.7), autoconf (v2.69), automake (v1.14); yasm
(v1.3.0), nasm (v2.11); libtool (v2.4.6); boost libraries (libboost-all-
dev) (v1.58); libevent (libevent-dev) (v2.0.21):
$ sudo apt-get install gcc g++ make cmake autogen autoconf au-
tomake yasm nasm libtool libboost-all-dev libevent-dev

Users can install the following library manually: Intel-storage-
acceleration-library (ISA-l) (v2.14.0):
$ tar -zxvf isa-l-2.14.0.tar.gz
$ cd isa-l-2.14.0
$ sh autogen.sh
$ ./configure; make; sudo make install

LogECMem Installation
Memcached Servers (v1.4.25)
$ sudo apt-get install memcached

For standalone setup, users can use "bash cls.sh" to re-set
memcached instances with IPs and Ports; For distributed setup,
users can use multiple nodes with di�erent IPs to run memcached
instances.

LogECMem Proxy
Users can use source code to install libmemcached (extented from
v1.0.18) in the proxy:
$ cd libmemcached-1.0.18
$ sh configure; make; sudo make install
$ export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

Users can setup passwordless SSH login, and use "SSH root@node
bash cls.sh" to re-set memcached instances in the proxy.

Users can use g++ to compile update.cpp and repair.cpp:
$ bash make.sh

Workloads
Users can use the provided workloads ("ycsb_set.txt" and
"ycsb_test.txt") in each directory to do demo tests, and fur-
ther more workloads via YCSB with basic parameter in
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-
Workload.

ARTIFACT EVALUATION
The paper mainly compares In-place, Full-stripe and LogECMem
in terms of update latency, memory overhead and multiple chunks
failures repair performance.

1. Update latency and Memory overhead
Users can con�gure N, K, workload dir, and server IP parameters,
and gain all three In-palace, Full-stripe and LogECMem results.
"./update [1|2|3] dir N K IP > /dev/null", 1|2|3 indicates In-place|Full-
stripe|LogECMem respectively, N indicates the number of all data
and parity chunks, K indicates the number of all data chunks, dir
indicates the path of workloads and IP indicates the DRAM node’s
IP. Note that users can con�gure more IPs and Ports in update.cpp
and run.sh for distributed setup.
$ cd update
$ bash run.sh

2. Multiple chunks failures repair performance
Users can con�gure N, K, workload dir and server IP parameters, and
gain all schemes’ repair performance. " ./repair dir N K > /dev/null", N
indicates the number of all data and parity chunks, K indicates the
number of all data chunks, dir indicates the path of workloads and
IP indicates the DRAM node’s IP. Note that users can con�gure
more IPs and Ports in repair.cpp and run.sh for distributed setup.
$ cd repair
$ bash run.sh

Author-Created or Modi�ed Artifacts:

Persistent ID:
https://zenodo.org/badge/latestdoi/355192108,
https://github.com/yuchonghu/logecmem

õ!

õ!

Artifact name: LogECMem

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: N/A

Operating systems and versions: Ubuntu 16.04

Compilers and versions: gcc v5.18.7, g++ v5.4.0

Applications and versions: N/A

Libraries and versions: Memcached v1.4, Libmemcached v1.0.18,
isa-l v2.14

Key algorithms: N/A

Input datasets and versions: N/A

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 18,2024 at 08:40:44 UTC from IEEE Xplore.  Restrictions apply. 


