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Abstract— To adapt to the increasing storage demands and
varying storage redundancy requirements, practical distributed
storage systems need to support storage scaling by relocat-
ing currently stored data to different storage nodes. However,
the scaling process inevitably transfers substantial data traffic
over the network. Thus, minimizing the bandwidth cost of
the scaling process is critical in distributed settings. In this
paper, we show that optimal storage scaling is achievable in
erasure-coded distributed storage based on network coding,
by allowing storage nodes to send encoded data during scaling.
We formally prove the information-theoretically minimum scaling
bandwidth for both scale-out and scale-in cases. Based on our
theoretical findings, we also build a distributed storage system
prototype NCScale based on Hadoop Distributed File System,
so as to realize network-coding-based scaling while preserving
the necessary properties for practical deployment. Experiments
on Amazon EC2 show that the scaling time can be reduced by
up to 50% over the state-of-the-art.

Index Terms— Erasure coding, storage scaling.

I. INTRODUCTION

D ISTRIBUTED storage systems provide a scalable plat-
form for storing massive data across a collection of

storage nodes (or servers). To provide reliability guarantees
against node failures, they commonly stripe data redundancy
across nodes. Erasure coding is one form of redundancy that
significantly achieves higher reliability than replication at the
same storage overhead [32], and has been widely adopted in
production distributed storage systems [11], [15], [29].

To accommodate the increasing storage demands, system
operators often regularly add new nodes to storage systems

Manuscript received November 24, 2020; revised July 2, 2021 and
August 17, 2021; accepted August 17, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor H. Seferoglu. Date of publication
August 26, 2021; date of current version February 17, 2022. This work
was supported in part by the National Natural Science Foundation of China
under Grant 61872414, in part by the Key Laboratory of Information Storage
System Ministry of Education of China, and in part by the Research Grants
Council of Hong Kong under Grant AoE/P-404/18. An earlier version of this
paper appeared at [DOI: 10.1109/INFOCOM.2018.8485961]. In this extended
version, we extend the design and analysis of NCScale for the scale-in case
and implement NCScale based on Hadoop Distributed File System. We also
add new evaluation results. (Corresponding author: Pan Zhou.)

Yuchong Hu and Xiaoyang Zhang are with the School of Com-
puter Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: yuchonghu@hust.edu.cn;
zhangxiaoyang1993@gmail.com).

Patrick P. C. Lee is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong, China
(e-mail: pclee@cse.cuhk.edu.hk).

Pan Zhou is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
panzhou@hust.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3106394, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3106394

to increase both storage space and service bandwidth. In this
case, storage systems need to re-distribute (erasure-coded) data
in existing storage nodes to maintain the balanced data layout
across all existing and newly added nodes, so as to exploit
the maximum possible parallelization among all nodes. Also,
system operators need to re-parameterize the right redundancy
level for erasure coding to adapt to different trade-offs of
storage efficiency, fault tolerance, access performance, and
management complexity. For example, the repair costs of
erasure-coded storage systems can be reduced by increasing
storage redundancy [8]. Storage systems may dynamically
switch between erasure codes of different redundancy levels
to balance between access performance and fault tolerance in
response to different access patterns of workloads [39], or to
balance between storage efficiency and fault tolerance as the
disk reliability varies over the disk lifetime [17].

This motivates us to study storage scaling, in which a
storage system relocates existing stored data to different nodes
and recomputes erasure-coded data based on the new data
layout. Since the scaling process inevitably triggers substantial
data transfers, we pose the following scaling problem, in which
we aim to minimize the scaling bandwidth (i.e., the amount
of transferred data during the scaling process). Note that the
scaling problem inherently differs from the classical repair
problem [8], which aims to minimize the amount of transferred
data for repairing lost data. Although both scaling and repair
problems aim to minimize bandwidth, scaling changes the
coding parameters and the number of storage nodes, while
repair keeps them unchanged. Thus, the scaling and repair
problems build on different problem settings that lead to dif-
ferent analyses and findings. In this paper, we study the scaling
problem from both theoretical and applied perspectives. Our
contributions include:

• We prove the information-theoretically minimum scaling
bandwidth using the information flow graph model [6],
[8]; in particular, we consider both scale-out and scale-in
cases (defined in Section II-B). To minimize the scaling
bandwidth, we leverage the information mixing nature of
network coding [6], by allowing storage nodes to send
the combinations of both uncoded and coded data that is
currently being stored. Note that existing scaling approaches
(e.g., [16], [34], [35], [38], [40]) cannot achieve the mini-
mum scaling bandwidth. To our knowledge, our work is the
first formal study on applying network coding to storage
scaling.

• We design a distributed storage system called NCScale,
which realizes network-coding-based scaling by leveraging
the available computational resources of storage nodes.
NCScale aims to achieve the minimum scaling bandwidth
depending on the parameter settings, while preserving
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several properties that are necessary for practical deploy-
ment (e.g., fault tolerance, balanced erasure-coded data
layout, and decentralized scaling).

• We have implemented a prototype of NCScale based on
Hadoop Distributed File System (HDFS) [30] and conducted
experiments on Amazon EC2. We show that NCScale
reduces the scaling time of Scale-RS [16], a state-of-the-art
scaling approach, by up to 50%. Also, the empirical per-
formance gain of NCScale is consistent with our theoretical
findings.
The source code of our NCScale prototype is available for

download at: https://github.com/yuchonghu/ncscale.

II. PROBLEM

A. Erasure Coding Basics

Erasure coding is typically constructed by two configurable
parameters n and k, where k < n, as an (n, k) code as
follows. Specifically, we consider a distributed storage system
(e.g., HDFS [30]) that organizes data as fixed-size units called
blocks. For every group of k blocks, called data blocks,
the storage system encodes them into additional n− k equal-
size blocks, called parity blocks, such that any k out of the
n data and parity blocks suffice to reconstruct the original k
data blocks. We call the collection of the n data and parity
blocks a stripe, and the n blocks are stored in n different
nodes to tolerate any n − k failures (either node failures or
lost blocks). A storage system contains multiple stripes, which
are independently encoded. The code construction has two
properties: (i) maximum distance separable (MDS), i.e., the
fault tolerance is achieved through minimum storage redun-
dancy, and (ii) systematic, i.e., the k data blocks are kept in
a stripe for direct access. Reed-Solomon (RS) codes [28] are
one well-known example of erasure codes that can achieve
both MDS and systematic properties, and have been adopted
by production systems (e.g., [11], [22]).

Most practical erasure codes (e.g., RS codes) are linear
codes, in which each parity block is formed by a linear com-
bination of the data blocks in the same stripe based on Galois
Field arithmetic. In this paper, we focus on Vandermonde-
based RS codes [24], whose encoding operations are based
on an (n − k) × k Vandermonde matrix [Vi,j ](n−k)×k , where
1 ≤ i ≤ n − k, 1 ≤ j ≤ k, and Vi,j = ij−1. For example, in
a (4, 2) code, we can compute two parity blocks, denoted by
P1 and P2, through a linear combination of two data blocks,
denoted by D1 and D2, over the Galois Field as follows:[

P1

P2

]
=

[
1 1
1 2

] [
D1

D2

]
. (1)

Suppose that we now scale from the (4, 2) code to the (6, 4)
code with two new data blocks D3 and D4. Then the two new
parity blocks, denoted by P �

1 and P �
2, can be computed as:

[
P �

1

P �
2

]
=

[
1 1 1 1
1 2 4 8

] ⎡
⎢⎣
D1

D2

D3

D4

⎤
⎥⎦ =

[
P1

P2

]
+

[
1 1
4 8

] [
D3

D4

]
. (2)

The Vandermonde matrix for the (4, 2) code is a sub-matrix
of the Vandermonde matrix for the (6, 4) code. Each new
parity block can be computed by adding an existing parity
block with a parity delta block, defined as the change between

the existing parity block and the new parity block. For exam-
ple, when P1 is updated to P �

1, we have P �
1 = P1 + ΔP1,

where ΔP1 is the parity delta block corresponding to existing
parity block P1. Note that the parity delta block can be
expressed as a linear combination of the new data blocks only
(e.g., ΔP1 = D3 + D4 as in Equation (2)); this holds for
Vandermonde-based RS codes if we scale from an (n, k) code
to an (n�, k�) code, where n − k = n� − k�. We leverage this
feature in our scaling design.

Note that systematic codes built on Vandermonde matri-
ces generally do not preserve the MDS property under
finite fields [18], [25]. Intel’s Intelligent Storage Acceleration
Library (ISA-L) [5] also supports Vandermonde-based RS
codes (in the function gf_gen_rs_matrix), and provides
a program called gen_rs_matrix_limits (since ISA-L
version 2.19) for finding the valid parameters that satisfy the
MDS property of RS codes under the Galois Field GF(28).
If we focus on small ranges of (n, k) and (n�, k�) (e.g.,
n, n� ≤ 20 and n − k ≤ 4), the MDS property of the
Vandermonde-based RS codes still holds under GF(28) [2].
In practice, the parameters (n, k) in real deployment often
fall into this range [13].

While erasure coding incurs much less redundancy than
replication [32], it triggers a significant amount of transferred
data in failure repair. For example, RS codes retrieve k blocks
to repair a lost block. Thus, many studies focus on the repair
problem [9], which aims to minimize the repair bandwidth.
Regenerating codes [8] are special erasure codes that build
on network coding [6] and provably achieve the optimal
trade-off between repair bandwidth and storage redundancy,
by allowing non-failed nodes to encode their stored data during
repair. In contrast, our work applies network coding to storage
scaling, which fundamentally differs from the repair problem.

B. Scaling

We consider two types of scaling, namely scale-out,
in which new nodes are added to the storage system, and
scale-in, in which existing nodes are removed from the storage
system:
• (n, k, s)-scaling (i.e., scale-out): For any s > 0, we

transform (n, k)-coded blocks in n nodes into (n + s, k +
s)-coded blocks that will be stored in n+s nodes, including
the n existing nodes and s new nodes.

• (n, k,−s)-scaling (i.e., scale-in): For any s > 0, we
transform (n, k)-coded blocks in n nodes into (n − s, k
− s)-coded blocks that will be stored in the n−s surviving
nodes.
Goal: Our goal is to minimize the scaling bandwidth,

defined as the amount of transferred data during the scaling
operation, while preserving all properties P1–P4 as stated
below.
• P1 (MDS): The new coded stripe remains MDS, while

tolerating the same number of n− k failures as the original
(n, k)-coded stripe.

• P2 (Systematic): The original data blocks are kept in the
new coded stripe after scaling.

• P3 (Uniform data and parity distributions): The respec-
tive proportions of data and parity blocks across multiple
stripes are evenly distributed across nodes before and after
scaling.
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Fig. 1. Scale-RS vs. network-coding-based scaling in (3, 2, 1)-scaling (i.e.,
from the (3, 2) code to the (4, 3) code). Scale-RS needs to transfer a total
of eight blocks to X2 and Y0, while network-coding-based scaling transfers
only four blocks to Y0. Note that blocks in each node need not be stored in
a contiguous manner in distributed storage systems.

• P4 (Decentralized scaling): The scaling operation can be
done without involving a centralized entity for coordination.

The scaling problem focuses on minimizing the scaling
bandwidth subject to the MDS property (i.e., P1), and includes
the properties P2–P4 in practical storage deployment with the
following implications: P2 always keeps original data blocks,
such that the read operations can directly access them without
encoding/decoding; P3 ensures that the parity updates are load-
balanced across nodes, assuming a uniform access pattern;
P4 eliminates any single point of failure or bottleneck in
scaling.

We fix the number of tolerable failures (i.e., n − k) before
and after scaling, as in existing scaling approaches for RAID
(e.g., [34], [35], [40]) and distributed storage (e.g., [16], [38]),
and we do not consider the variants of the scaling problem for
varying n − k.

We address the scaling problem via network coding.
We motivate this via a scale-out example of (3, 2, 1)-scaling
in Figure 1. Let Xi be the ith existing node of a stripe before
scaling, where 0 ≤ i ≤ n − 1, and Yj be the jth new node
after scaling, where 0 ≤ j ≤ s− 1. Also, let D∗, P∗, and Q∗
be a data block, a parity block before scaling, and a parity
block after scaling, respectively, for some index number ∗.

We first consider Scale-RS [16] (Figure 1(a)), which applies
scaling to RS codes for general (n, k). Scale-RS performs
scaling in two steps. The first step is data block migration,
which relocates some data blocks from existing nodes to new
nodes. For example, from Figure 1(a), the data blocks D4, D5,
D10, and D11 are relocated to the new node Y0.

The second step is parity block updates, which compute
parity delta blocks in the nodes that hold the relocated data
blocks and send them to the nodes that hold the parity
blocks for reconstructing new parity blocks. For example, from
Figure 1(a), the data blocks D4, D5, D10, and D11 are used
to compute the parity delta blocks, which are then sent to
node X2, where the parity blocks are stored. X2 forms the
new parity blocks Q0, Q1, Q2, and Q3, respectively. In this
example, Scale-RS needs to transfer eight blocks. Note that
property P3 is violated here, since the parity blocks are stored
in a dedicated node.

We now consider how network-coding-based scaling can
reduce the scaling bandwidth, as shown in Figure 1(b). Our

key idea is to couple the steps of both data block migration
and parity block updates, by allowing each existing node to
perform local computations before relocating blocks. Specif-
ically, 1) before scaling, each parity block is computed as
the XOR operations of the data blocks in the same row as
in RAID-5 [23]; for example, P0 = D0 ⊕ D1, where ⊕ is
the XOR operator; 2) during scaling, X0 can locally compute
the new parity block Q0 = P0 ⊕ D8. Similarly, X1 and X2

can compute the new parity blocks Q1 = P1 ⊕ D11 and
Q2 = P2 ⊕ D9, respectively. Also, X0 also locally computes
Q3 = P3 ⊕ D10. Now, the scaling process relocates D8, D9,
D11, and the locally computed Q3 to the new node Y0. Thus,
we now only need to transfer four blocks, and this amount
is provably minimum (Section III). In addition, all properties
P1–P4 are satisfied.

Our idea is that unlike Scale-RS, in which data blocks and
their encoded outputs (i.e., parity delta blocks) are transferred,
we now make existing storage nodes send the encoded outputs
of both data and parity blocks; this is feasible as each storage
node stores both data and parity blocks due to the property
of uniform data and parity distributions (i.e., P3). Since parity
blocks are linear combinations of data blocks, we now include
more information in the encoded outputs, thereby allowing less
scaling bandwidth without losing information. This follows
the information mixing nature of network coding [6]. In addi-
tion, the decentralized scaling property (i.e., P4) lets each
storage node compute the encoded outputs without the help
of a centralized entity. This follows the relay-node-encoding
feature of network coding, and allows us to model the storage
nodes as relay nodes in the information flow graph analysis
(Section III).

C. Discussion of Existing Work on Properties P1–P4

Table I shows how existing scaling approaches (see
Section IX for details) address the properties P1–P4.
FastScale [45], GSR [34], MDS-Frame [35], and RS6 [40]
are designed for RAID arrays rather than distributed storage
systems. Thus, for P1, they either provide no fault tolerance or
are tolerable against at most two failures; for P4, they rely on
the RAID controller to download all original data blocks for
computing the new parity blocks. Wu et al. [38] apply scaling
to Cauchy RS codes [7] and do not consider P4, as they use a
centralized node for controlling and downloading data blocks
for parity updates during scaling. Rai et al. [27] only provide
functional code constructions (i.e., all blocks are in coded
form) in the theoretical context, so both P2 and P3 are violated.
Scale-RS [16] only focuses on a RAID-4-like layout, in which
the data and parity blocks reside in dedicated nodes, so P3 is
violated. In particular, Scale-RS requires the nodes that store
parity blocks to download data blocks for computing new
parity blocks, thereby incurring substantial scaling bandwidth.
In contrast, NCScale satisfies all the properties P1–P4.

In addition, we compare the scaling bandwidth for differ-
ent schemes. FastScale [45] achieves the minimum scaling
bandwidth in RAID-0 (i.e., no parity blocks are involved).
The schemes that do not satisfy P4 (i.e., [34], [35], [38],
[40]) need to upload and download data blocks for computing
parity blocks via the RAID controller or a centralized node,
so they incur at least twice the amount of transferred data (i.e.,
at least twice the minimum scaling bandwidth). Rai et al. [27]
treat the scaling problem as the repair problem, but the two
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TABLE I

COMPARISONS OF EXISTING SCALING PROPOSALS

problems are inherently different (Section I). The study [27]
does not formally prove the optimality of scaling or provide
the minimum scaling bandwidth (see Section IX for details).
Scale-RS [16] always transfers one more block per stripe
during scaling than NCScale (Section VII), while NCScale
achieves the minimum scaling bandwidth when n−k = 1 and
has n−k−1 more blocks per stripe than the minimum scaling
bandwidth when n − k > 1 (Corollary 3).

III. MODEL

We analyze both (n, k, s)-scaling and (n, k,−s)-scaling
using the information flow graph model [6], [8]. We derive
their respective lower bounds of scaling bandwidth, and show
that the lower bounds are tight by proving that there exist
random linear codes whose scaling bandwidth matches the
respective lower bounds for general (n, k, s) and (n, k,−s).
Note that random linear codes are non-systematic (i.e., P2 is
violated). In Sections IV and V, we address all P1–P4 in our
design.

A. Model for (n, k, s)-Scaling

We first consider (n, k, s)-scaling. To comply with the
information flow graph model in the literature (e.g., [8]),
we assume that erasure coding operates on a per-file basis.
Specifically, in order to encode a data file of size M , we divide
it into k blocks of size M

k each, encode the k blocks into n
blocks of the same size, and distribute the n blocks across n
nodes. Then the (n, k, s)-scaling process for the data file can
be decomposed into four steps:
1) Each existing node Xi (0 ≤ i ≤ n − 1) encodes its stored

data of size M
k into some encoded data.

2) Each new node Yj (0 ≤ j ≤ s−1) downloads the encoded
data from each Xi (0 ≤ i ≤ n − 1).

3) Each existing node Xi (0 ≤ i ≤ n− 1) removes M
k − M

k+s

units of its stored data and only stores data of size M
k+s .

4) Each new node Yj (0 ≤ j ≤ s − 1) encodes all its
downloaded data into the stored data of size M

k+s .
Let β denote the bandwidth between any existing node Xi to

any new node Yj ; in other words, each Yj downloads at most
β units of encoded data from Xi. To minimize the scaling
bandwidth, our goal is to minimize β, while ensuring that the
data file can be reconstructed from any k + s nodes.

We construct an information flow graph G for (n, k, s)-
scaling as follows (Figure 2(a)):

1) Nodes in G:
• We add a virtual source S and a data collector T as the

source and destination nodes of G, respectively.

• Each existing storage node Xi (0 ≤ i ≤ n−1) is represented
by (i) an input node X in

i , (ii) a middle node Xmid
i , (iii) an

output node Xout
i , (iv) a directed edge X in

i → Xmid
i with

capacity M
k , i.e., the amount of data stored in Xi before

scaling, and (v) a directed edge Xmid
i → Xout

i with capacity
M

k+s , i.e., the amount of data stored in Xi after scaling.
• Each new storage node Yj (0 ≤ j ≤ s − 1) is represented

by (i) an input node Y in
j , (ii) an output node Y out

j , and
(iii) a directed edge Y in

j → Y out
j with capacity M

k+s , i.e., the
amount of data stored in node Yj .

2) Edges in G:

• We add a directed edge S → X in
i for every i (0 ≤ i ≤ n−1)

with an infinite capacity for data distribution.
• We add a directed edge Xmid

i → Y in
j for every i (0 ≤ i ≤

n − 1) and j (0 ≤ j ≤ s − 1) with capacity β.
• We select any k + s output nodes and add a directed edge

from each of them to T with an infinite capacity for data
reconstruction.

The following lemma states the necessary condition of the
lower bound of β.

Lemma 1: For (n, k, s)-scaling, β must be at least M
n(k+s) .

Proof: Clearly, each new storage node Yj (0 ≤ j ≤ s−1)
must receive at least M

k+s units of data from all existing storage
nodes Xi’s (0 ≤ i ≤ n − 1) over the links with capacity β
each. Thus, we have nβ ≥ M

k+s . The lemma follows.
To show the lower bound in Lemma 1 is tight, we first

analyze the capacities of all possible min-cuts of G. A cut is
a set of directed edges, such that any path from S to T must
have at least one edge in the cut. A min-cut is the cut that has
the minimum sum of capacities of all its edges. Due to the
MDS property, there are

(
n+s
k+s

)
possible data collectors. Thus,

the number of variants of G, and hence the number of possible
min-cuts, are also

(
n+s
k+s

)
.

Lemma 2: For (n, k, s)-scaling, suppose that β is equal to
its lower bound M

n(k+s) . Then the capacity of each possible
min-cut of G is at least M .

Proof: Let (C, C̄) be some cut of G, where S ∈ C and
T ∈ C̄. Here, we do not consider the cuts that have an edge
directed either from S or to T , since such an edge has an
infinite capacity. For the remaining cuts, we can classify the
storage nodes into four types based on the nodes in C̄:

• Type 1: Both Xmid
i and Xout

i are in C̄ for some i ∈ [0, n−1];
• Type 2: Only Xout

i is in C̄ for some i ∈ [0, n − 1];
• Type 3: Only Y out

j is in C̄ for some j ∈ [0, s− 1]; and
• Type 4: Both Y in

j and Y out
j are in C̄ for some j ∈ [0, s−1].
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Fig. 2. Information flow graphs for (n, k, s)-scaling and (n, k,−s)-scaling.

We now derive the capacity of each possible cut for each
data collector. Suppose that T connects to ti nodes of Type i,
where 1 ≤ i ≤ 4, for data reconstruction, such that:

t1 + t2 + t3 + t4 = k + s. (3)

Let Λ(t1, t2, t3, t4) denote the capacity of a cut. We derive
Λ as follows:
• Each storage node of Type 1 contributes M

k to Λ;
• Each storage node of Type 2 contributes M

k+s to Λ;
• Each storage node of Type 3 contributes M

k+s to Λ; and
• Each storage node of Type 4 contributes (n − t1)β to Λ.
Figure 2(a) illustrates the details. Thus, we have:

Λ = t1 · M

k
+ t2 · M

k + s
+ t3 · M

k + s
+ t4 · (n − t1)β. (4)

By Lemma 1 and Equation (3), we reduce Equation (4) to:

Λ ≥ M + M · t1 · (n · s − k · t4)
k(k + s)n

. (5)

Since n > k and s ≥ t4 (Type 4 only has new storage
nodes), the right hand side of Equation (5) must be at least M .
The lemma holds.

Lemma 3 [8]: If the capacity of each possible min-cut of
the flow graph is at least the original file size M , there
exists a random linear network coding scheme guaranteeing
that T can reconstruct the original file for any connection
choice, with a probability that can be driven arbitrarily high
by increasing the field size.

Theorem 1: For (n, k, s)-scaling and an original file of size
M , there exists an optimal functional scaling scheme, such that
β is minimized at M

n(k+s) while the MDS property of tolerating
any n − k failures is preserved.

Proof: It follows from immediately Lemmas 2 and 3.
Theorem 1 implies that the minimum scaling bandwidth per

new stripe is n · s ·β = s·M
k+s , i.e., optimal scaling occurs when

the amount of transferred data to the new nodes is equal to
the size of the data being stored in the s new nodes. Since
each new node stores one block, optimal scaling requires s
blocks for each stripe of size being scaled from n blocks to
n + s blocks during (n, k, s)-scaling. We have the following
corollary.

Corollary 1: For distributed storage systems that organize
data in fixed-size blocks, the minimum scaling bandwidth is
s blocks per new (n + s, k + s)-coded stripe for (n, k, s)-
scaling.
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Note that the above corollary presents the scaling bandwidth
per stripe instead of the total scaling bandwidth, so as to show
easily whether a scaling design is optimal and support fair
comparisons in our numerical analysis (Section VII).

B. Model for (n, k,−s)-Scaling

For (n, k,−s)-scaling, we also start with an (n, k)-coded
data file of size M as in Section III-A. The main difference
here is that scale-in transfers data among removed nodes
and surviving nodes, while scale-out transfers data between
existing nodes and new nodes. Let Xi be the ith surviving
node of a stripe, where 0 ≤ i ≤ n − s − 1, and Yj be the
jth removed node of a stripe, where 0 ≤ j ≤ s− 1. Then the
(n, k,−s)-scaling process for the data file can be decomposed
into four steps:
1) Each removed node Yj (0 ≤ j ≤ s− 1) encodes its stored

data of size M
k into some encoded data.

2) Each surviving node Xi (0 ≤ i ≤ n − s − 1) downloads
the encoded data from each Yj (0 ≤ j ≤ s − 1).

3) Each removed node Yj (0 ≤ j ≤ s − 1) removes all of its
stored data.

4) Each surviving node Xi (0 ≤ i ≤ n − s − 1) encodes its
stored data before scaling and its downloaded data during
scaling into the stored data of size M

k−s after scaling.
Let β denote the bandwidth between any removed node Yj

to any surviving node Xi; in other words, each Xi downloads
at most β units of encoded data from Yj . To minimize the
scaling bandwidth, our goal is to minimize β, while ensuring
that the data file can be reconstructed from any k − s nodes.

We now construct an information flow graph G for
(n, k,−s)-scaling (Figure 2(b)). Note that scale-in transfers
data between removed nodes and surviving nodes, so we add
a directed edge Y out

j → Xmid
i for every i (0 ≤ i ≤ n− s−1)

and j (0 ≤ j ≤ s− 1) with capacity β. The following lemma
states the necessary condition of the lower bound of β.

Lemma 4: For (n, k,−s)-scaling, β must be at least
M

k(k−s) .

Proof: Similar to Lemma 1, each surviving storage node
Xi (0 ≤ i ≤ n−s−1) must receive at least M

k−s − M
k units of

data from all removed storage nodes Yj’s (0 ≤ j ≤ s−1) over
the links with capacity β each. Thus, we have sβ ≥ Ms

k(k−s) .
The lemma follows.

Similar to the scale-out case, the lower bound in Lemma 4 is
tight, achievable by random linear network coding (Lemma 3).
We can deduce the following theorem.

Theorem 2: For (n, k,−s)-scaling and an original file of
size M , there exists an optimal functional scaling scheme,
such that β is minimized at M

k(k−s) while the MDS property
of tolerating any n − k failures is preserved.

Theorem 2 implies that optimal scaling occurs when the
amount of transferred data to the surviving nodes is equal to
the size of the data being removed of the s removed nodes.
Thus, we have the following corollary.

Corollary 2: For distributed storage systems that organize
data in fixed-size blocks, the minimum scaling bandwidth is s
blocks per new (n, k)-coded stripe for (n, k,−s)-scaling.

C. Discussion

We discuss the relevance of our analysis in this section
with the properties P1–P4. Theorems 1 and 2 ensure that

the scaling process under random linear coding maintains
the MDS property (i.e., P1 is satisfied) and can be per-
formed without a centralized entity (i.e., P4 is satisfied).
However, random linear coding does not keep the original
data blocks, so both P2 and P3 are violated. Thus, we pro-
ceed to design explicit coding schemes (Sections IV and V)
that aim to minimize the scaling bandwidth, while satisfying
P1–P4.

IV. NCSCALE: SCALE-OUT

We present NCScale, a distributed storage system that real-
izes network-coding-based storage scaling for both scale-out
and scale-in cases. In this section, we focus on scale-out
in NCScale, which satisfies P1–P4 (Section II-B) with
the goal of achieving the minimum scaling bandwidth
(Section III-A).

A. Main Idea

NCScale operates on (systematic) RS codes [28], such
that all blocks before and after scaling are still encoded by
RS codes. Before scaling, each existing node independently
computes parity delta blocks, which are then merged with
existing parity blocks to form new parity blocks for the new
stripes after scaling. Finally, NCScale sends some of the data
blocks and new parity blocks to the new nodes, while ensuring
that the new stripes have uniform distributions of data and
parity blocks across nodes.

NCScale can achieve the minimum scaling bandwidth when
n − k = 1 (i.e., each stripe has one parity block). In this
case, the new parity block of each stripe can be computed
locally from the parity delta block generated from the same
node. In other words, the blocks that are sent over the network
by NCScale are only those that will be stored in the new
nodes. From Corollary 1, the scaling bandwidth of NCScale
matches the optimal point. Figure 3(a) shows an example of
(3, 2, 1)-scaling in NCScale.

On the other hand, NCScale cannot achieve the optimal
point for n− k > 1 (i.e., each stripe has more than one parity
block). Each existing node now not only generates a parity
delta block for locally computing a new parity block, but also
sends parity delta blocks for computing new parity blocks of
the same stripe in different nodes. Nevertheless, the number
of parity delta blocks that are sent to other nodes remains
limited, as we only use one parity delta block to update each
new parity block (Section IV-C for details). Figure 3(b) shows
an example of (4, 2, 2)-scaling in NCScale.

One constraint of NCScale is that its current algorithmic
design requires s ≤ n

n−k−1 ; if n − k = 1, s can be of any
value (Section IV-C). Nevertheless, we believe that the range
of s is sufficiently large in practice, as n is often much larger
than n − k to limit the amount of storage redundancy.

B. Preliminaries

We now provide definitions for NCScale in (n, k, s)-scaling
and summarize the steps of NCScale. We also present the
scaling bandwidth of NCScale.

To perform scaling, NCScale operates on a collection of n(k
+ s)(n + s) stripes in n nodes that have nk(k+s)(n+s) data
blocks in total. We assume that the nodes that hold the parity
blocks in a stripe are circularly rotated across stripes [26], so as
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Fig. 3. Scale-out in NCScale. Note that (3, 2, 1)-scaling achieves the minimum scaling bandwidth (Corollary 1), while (4, 2, 2)-scaling does not.

to keep the uniform distributions of data and parity blocks over
the n nodes; formally, the n−k parity blocks of the wth stripe
are stored in Xi, · · ·X(i+n−k−1) mod n for some w ≥ 0 and
i = w mod n. After scaling, NCScale forms nk(n+s) stripes
over n + s nodes, with the same number of nk(k + s)(n + s)
data blocks in total.

NCScale classifies the above n(k + s)(n + s) stripes into
two groups. The first group is denoted by PG. It contains the
first nk(n + s) stripes, whose parity blocks will be updated
to new parity blocks based on parity delta blocks. The second
group is denoted by DG. It contains the remaining ns(n +
s) stripes, whose data blocks will be used to generate parity
delta blocks for updating the parity blocks in the first group
PG. Note that the number of stripes in PG is also equal to
the number of stripes after scaling.

Parity delta blocks are formed by the linear combinations of
the new data blocks in a stripe based on a Vandermonde matrix
(Section II-A). Let Δi,j be a parity delta block generated from
an existing node Xi for updating a parity block in an existing
node Xj , where 0 ≤ i, j ≤ n − 1 (when i = j, the new
parity block is computed locally). NCScale ensures that for
each of the nk(n + s) stripes in PG, the n− k parity blocks
of the new stripe can be computed from parity delta blocks that
are all generated by the same node. One of the parity blocks
can retrieve a parity delta block locally, while the remaining
n − k − 1 parity blocks need to retrieve a total of n − k − 1
parity delta blocks over the network. In other words, there
will be a total of nk(n + s)(n − k − 1) parity delta blocks
transferred over the network.

In addition, NCScale sends nk(n + s) × s blocks to the s
new nodes. In general, the scaling bandwidth of NCScale per
new stripe formed after scaling is:

nk(n + s)(n − k − 1 + s)
nk(n + s)

= n − k − 1 + s. (6)

Algorithm 1 Prepare

1: PG = first nk(n + s) stripes
2: DG = next ns(n + s) stripes
3: for w = 0 to nk(n + s) − 1 do
4: Dw = w�th set of s data blocks of Xw mod n in

DG, where w� = �w
n 	

5: end for

C. Algorithmic Details

We now present the algorithmic details of (n, k, s)-scaling
in NCScale. Figure 3 illustrates the algorithmic steps.

1) Prepare: NCScale prepares the sets of data and parity
blocks to be processed in the scaling process, as shown
in Algorithm 1. It first identifies the groups PG and DG
(lines 1-2). It then divides the data blocks in DG into different
sets Dw’s, where 0 ≤ w ≤ nk(n + s) − 1 (lines 3-5),
by collecting and adding s data blocks from X0 to Xn−1 into
Dw in a round-robin fashion. Specifically, DG has ns(n + s)
stripes, and hence nsk(n + s) data blocks, in total. We divide
the data blocks of each existing node Xi (0 ≤ i ≤ n − 1) in
DG into k(n + s) sets of s data blocks, and add the w�th
set of s data blocks of each existing node Xw mod n into Dw,
where “mod” denotes the modulo operator and w� = �w

n 	
(line 4).

2) Compute, Send, and Delete: After preparation, NCScale
computes new parity blocks for the new stripes, sends blocks
to the s new nodes, and deletes obsolete blocks in existing
nodes. Algorithm 2 shows the details. NCScale operates across
all nk(n + s) stripes in PG. To compute the new parity
blocks, each existing node Xi (0 ≤ i ≤ n − 1) operates on
the wth stripe for i = w mod n (line 2). Recall that the parity
blocks are stored in Xi, · · · , X(i+n−k−1) mod n. For 0 ≤ j ≤
n−k−1 and j� = (j+w) mod n, Xi computes a parity delta
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Algorithm 2 Compute, Send, and Delete

1: for w = 0 to nk(n + s) − 1 do
2: i = w mod n
3: for j = 0 to n − k − 1 do
4: j� = (j + w) mod n
5: Xi generates Δi,j′ from the s data blocks in Dw

for the jth parity block in the wth stripe of PG
6: Xi sends Δi,j′ to Xj′ , which adds Δi,j′ to the jth

parity block in the wth stripe of PG
7: end for
8: if w ≤ nk(n − s(n − k − 1)) − 1 then
9: Xi sends all s data blocks in Dw to the s new nodes

10: else
11: Xi sends the locally updated parity block

and any s − 1 data blocks in Dw to the s
new nodes

12: end if
13: Xi deletes all obsolete blocks
14: end for

block Δi,j′ and sends it to Xj′ , which adds Δi,j′ to the jth

parity block of the wth stripe in PG (lines 3-7). Note that
when j = 0, Xi updates the parity block locally.

After computing the new parity blocks, NCScale sends
blocks to the new nodes (lines 8-12). We find that if w ≤
nk(n − s(n − k − 1)) − 1, Xi sends all s data blocks in Dw

to the s new nodes; otherwise, Xi sends the locally updated
parity block and any s − 1 data blocks in Dw to the s new
nodes (we assume that the parity block is rotated over the s
nodes across different stripes to evenly place the parity blocks).
For example, Figure 3 shows that the last step of scaling is
split into two cases. Finally, Xi deletes all obsolete blocks,
including the blocks that are sent to the new nodes and the
parity blocks in DG (line 13). By doing so, we can guarantee
uniform distributions of data and parity blocks after scaling
(Section IV-D).

Remark: Algorithm 2 requires s ≤ n
n−k−1 , so that the right

side of the inequality in line 8 is a positive number.

D. Proof of Correctness

Theorem 3: NCScale preserves P1–P4 after scaling.
Proof: See Appendix A in the digital supplementary file.

Corollary 3: In (n, k, s)-scaling, when n−k = 1, NCScale
achieves the lower bound in Corollary 1; when n − k > 1,
the gap between the lower bound and NCScale is n − k − 1
blocks per new stripe.

V. NCSCALE: SCALE-IN

We extend NCScale for scale-in, in which the generation
of parity blocks for the new stripes is different from that in
scale-out. We focus on two cases in scale-in: n − k = 1 and
n− k > 1. Both cases still satisfy P1–P4 (Section II-B), with
the goal of achieving minimum scaling bandwidth for n−k =
1 (Section III-B).

A. Scale-In for n−k = 1

When n − k = 1, each stripe has one parity block, so it is
easy to update the existing parity block of a stripe locally by

Fig. 4. Steps for (4, 3, −1)-scaling: (a) scaling of stripes that have only data
blocks in the removed node; (b) scaling of stripes that have parity blocks in
the removed node.

transferring the removed data blocks of the stripe to the node
where the parity block resides, while preserving P3 (uniform
data and parity distributions). Figure 4 depicts the scale-in
steps for (4, 3, −1)-scaling. In particular, NCScale classifies
the stripes involved in the scaling process into two cases:
• Stripes that have only data blocks in the removed node

(Figure 4(a)): NCScale first generates new parity blocks for
the new stripes from the data blocks in the removed node
(step 1). It then sends these data blocks and their generated
parity blocks to the surviving nodes as the new stripes, while
these data blocks are transferred to the nodes that have parity
blocks within the same existing stripe (step 2). It uses these
data blocks to locally update the parity blocks in the existing
stripes (step 3).

• Stripes that have parity blocks in the removed node
(Figure 4(b)): NCScale first sends the existing parity blocks
to surviving nodes, in which the data blocks within the
existing stripe update these parity blocks locally (step 1).
It then generates the new parity blocks for the new stripes by
collecting these data blocks that are used to update existing
parity blocks (step 2).
NCScale can reduce the scaling bandwidth when n−k = 1

significantly. For the stripes in the first case, the new parity
block of each new stripe is sent as a coded block that is
generated by the data blocks from the same removed node,
and the existing parity block of each existing stripe can be
updated locally. In other words, the blocks that are sent over
the network by NCScale are only those that will be added to
the surviving nodes. From Corollary 2, the scaling bandwidth
of NCScale matches the optimal point. For the stripes in
the second case, the existing parity block of each existing
stripe can also be updated locally, but the new parity block of
each new stripe is generated from the data blocks residing in
other surviving nodes. Nevertheless, the number of data blocks
that are transferred for the generation of the new parity blocks
remains limited, since the parity blocks only occupy 1

n of all
blocks of the stripes in the second case.

Appendix B (see the digital supplementary file) elaborates
the scale-in process for n − k = 1. We can derive the
corresponding scaling bandwidth of NCScale per new stripe
as:

s((n − s)(n + 1) − 2)
nk

. (7)

B. Scale-In for n−k > 1

When n − k > 1, each stripe has more than one parity
block, so it becomes difficult for scale-in to update each
existing parity block locally while preserving P3. NCScale
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Fig. 5. Steps of (6, 4, −2)-scaling: (a) scaling of stripes that have only data
blocks in the removed nodes; (b) scaling of stripes that have parity blocks in
the removed nodes.

incurs additional scaling bandwidth to maintain P3, such that
some of the existing parity blocks can be updated locally, while
the remaining existing parity blocks need to be updated via
the parity delta blocks generated from other surviving nodes.
Figure 5 depicts the scale-in steps for (6, 4, −2)-scaling.

Before scaling, NCScale identifies the stripes with the same
parity layout (i.e., the parity blocks reside in the same nodes),
and then performs scale-in operations in a set of stripes
with the same parity layout. It classifies the stripes into the
following two cases:
• Stripes that have only data blocks in the removed nodes

(Figure 5(a)): The scaling steps of this case are similar to
the first case in scale-in for n − k = 1.

• Stripes that have parity blocks in the removed nodes
(Figure 5(b)): NCScale first sends the existing parity blocks
to the surviving nodes (step 1). In the surviving nodes,
it uses the data blocks that are to be replaced by the parity
blocks to generate new parity blocks for the new stripes
(step 2). It sends these data blocks and their generated parity
blocks to the surviving nodes as new stripes (step 3). Finally,
it generates parity delta blocks from these data blocks to
update the existing parity blocks in the existing stripes.

Appendix C (see the digital supplementary file) elaborates
the scaling-in process for n − k > 1. We can derive the
corresponding scaling bandwidth of NCScale per new stripe
as (8), as shown at the bottom of the next page:

Similar to Section IV-D, we also provide the following
corollary on the tightness of NCScale in (n, k,−s)-scaling.

Corollary 4: In (n, k,−s)-scaling, when n − k = 1,
the gap between the lower bound in Corollary 2 and
NCScale is s((n−s)(n+1)−nk−2)

nk blocks per new stripe; when
n− k > 1, the gap between the lower bound and NCScale is
(n−s)((n−k)(nk+sk−2s2−s)−ks2−2)−min(n−k,k−s)((n−s)(k−s)+n)

nk(n−s)
blocks per new stripe.

Fig. 6. Architecture of HDFS-RAID integrated with NCScale.

VI. IMPLEMENTATION

We have implemented a prototype of NCScale based on
HDFS [30]. In this section, we first provide an overview of
HDFS and its extension, called HDFS-RAID [4], for erasure
coding. We then describe how we integrate NCScale into
HDFS-RAID to support storage scaling for erasure-coded
storage.

A. HDFS Overview

HDFS [30] is a widely used distributed storage system in
both industrial and academic deployments. It provides reliable
storage for massive volumes of data across multiple nodes
in a large cluster. It stores each file in units of fixed-size
blocks that are replicated for fault tolerance. It consists of two
types of nodes: a single NameNode that stores metadata and
coordinates storage operations, and multiple DataNodes that
provide actual data storage. HDFS-RAID [4] is an extension of
HDFS and employs erasure coding to provide low-redundancy
fault tolerance. It introduces a RaidNode to perform erasure
coding operations, such as encoding, decoding, and repair.
To perform encoding for a stripe, the RaidNode first obtains
the metadata of k data blocks from the NameNode, and uses
the metadata to collect the k data blocks from k different
DataNodes to generate the parity blocks that are then written
to HDFS.

B. Integration of NCScale Into HDFS-RAID

We implement a NCScale prototype atop Facebook’s
HDFS-RAID [3]. Figure 6 depicts the HDFS-RAID architec-
ture with NCScale. Our NCScale prototype is written in Java,
with around 7.5K LoC. Specifically, we implement NCScale
as four distinct modules, as described below.

1) Placement Manager Module: We implement this module
to manage block placements, in which the distributions of
data blocks and parity blocks are uniform before scaling
(Section IV-B). Since the original HDFS-RAID only supports
random distributions of data and parity blocks, we realize the
placement algorithms for RS codes in the placement manager
module, which is now added to the RaidNode. When the data
blocks are encoded into parity blocks, the RaidNode will call
the placement manager module to choose a specific DataNode
for each block, which is then sent to the DataNode. Thus,
the placement manager module ensures a uniform placement
for the scaling operation.

2) Scaling Manager Module: We implement this module in
the RaidNode to manage scaling operations. When a scaling
operation is triggered, the scaling manager module chooses the
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corresponding scaling algorithm based on different parameter
settings. It then obtains metadata from the NameNode for the
collection of blocks that are involved in a scaling operation
from NameNode. It sends the metadata and the scaling type
to the DataNodes via sockets, such that all the DataNodes can
perform the scaling operation in parallel.

3) Scaling Module: We implement this module in each
DataNode to perform a scaling operation. It uses the metadata
from the RaidNode to read the locally stored blocks, and
then uses these blocks to perform the scaling operation. The
scaling module exports three APIs for a scaling operation:
(i) Compute, which computes new parity blocks or parity
delta blocks from its locally stored data blocks and received
data blocks by calling the calculation module (see below);
(ii) Send, which sends data blocks, parity blocks, and
parity delta blocks to another DataNode via sockets; and
(iii) Delete, which deletes all obsolete blocks. After a
scaling operation, the scaling module updates the metadata of
the NameNode and notifies the RaidNode of the completion
of the scaling operation.

4) Calculation Module: We implement this module in
each DataNode to perform encoding and decoding opera-
tions. We realize the calculation module in C++ based on
Intel’s Intelligent Storage Acceleration Library (ISA-L) [5].
We link the calculation module with HDFS (written in Java)
via the Java Native Interface. We mainly use two ISA-L
APIs: ec_init_tables to initialize coding coefficients,
and ec_encode_data to execute coding operations.

VII. NUMERICAL ANALYSIS

We present numerical analysis results of NCScale. We
compare it with Scale-RS [16], which represents the state-
of-the-art scaling scheme for RS codes in distributed storage
systems. In our numerical analysis, we calculate the scaling
bandwidth as the total number of blocks transferred during
scaling normalized to the total number of stripes after scaling.

A. Scale-Out

We first consider the scale-out case. Specifically, we con-
sider the scaling bandwidth of three different schemes.
• Optimal: The information-theoretically minimum scaling

bandwidth is given by s blocks (per new stripe) for any
(n, k) (Corollary 1).

• Scale-RS: To form a new stripe after scaling, Scale-RS first
sends s data blocks from existing nodes to s new nodes for
data block migration, followed by n− k parity delta blocks
for parity block updates (e.g., Figure 1(a)). Thus, the scaling
bandwidth of Scale-RS is s+n−k blocks (per new stripe).

• NCScale: From Equation (6), the scaling bandwidth of
NCScale is s + n − k − 1 blocks (per new stripe).
Figure 7 shows the numerical results of scaling bandwidth

(in units of blocks) per new stripe formed after scaling. Here,
we focus on s = 1 and s = 2, and vary (n, k). In summary,
the percentage reduction of scaling bandwidth of NCScale
over Scale-RS is higher for smaller n − k or smaller s. For

Fig. 7. Scale-out: numerical results of scaling bandwidth (in units of blocks)
per new stripe formed after scaling.

example, for (6, 5, 1), the reduction is 50%, while for (6, 4, 1)
and (6, 5, 2), the reduction is 33.3%. NCScale matches the
optimal point when n − k = 1, and deviates more from the
optimal point when n−k increases (e.g., by three blocks more
for (6, 2, 2)). Nevertheless, NCScale always has less scaling
bandwidth than Scale-RS by one block (per new stripe).

B. Scale-In

We now consider the scale-in case. Similar to scale-out,
we consider the optimal scheme, Scale-RS, and NCScale as
follows.
• Optimal: Since there will be M

k−s new stripes after scaling
for a data file of size M , the information-theoretically
minimum scaling bandwidth is given by s(n−s)

k blocks (per
new stripe) for any (n, k) (Corollary 2).

• Scale-RS: From the Scale-RS [16], we derive the scaling
bandwidth as follows. To form k new stripes after scaling,
Scale-RS first sends s(n − s) data blocks and new parity
blocks from s removed nodes to n − s surviving nodes as
new stripes, followed by (k − s)(n− k) parity delta blocks
for parity block updates. Thus, the scaling bandwidth of
Scale-RS is s(n−s)+(k−s)(n−k)

k blocks (per new stripe).
• NCScale: From Equations (7) and (8), the scaling bandwidth

of NCScale per new stripe is: (i) s((n−s)(n+1)−2)
nk blocks for

n − k = 1, and (ii) the equation can be derived, as shown
at the bottom of next page blocks for n − k > 1.
Figure 8 shows the numerical results of scaling bandwidth

(in units of blocks) per new stripe formed after scaling. Here,
we focus on s = 1 and s = 2, and vary (n, k). In summary,
the percentage reduction of scaling bandwidth of NCScale over
Scale-RS is higher for n − k = 1 and small s. For example,
for (7, 6,−1), the reduction is 38.9%, while for (7, 5,−1)
and (7, 6,−2), the reduction is 7.1% and 21.7%, respectively.
NCScale nears the optimal point when n−k = 1. Nevertheless,
NCScale always has less scaling bandwidth than Scale-RS.

(n − s)((n − k)(nk + sk − 2s2 − s) + sk(n − s) − 2) − min(n − k, k − s)((n − s)(k − s) + n)
nk(n − s)

(8)
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Fig. 8. Scale-in: numerical results of scaling bandwidth (in units of blocks)
per new stripe formed after scaling.

VIII. PERFORMANCE EVALUATION

In this section, we present performance evaluation results
of NCScale. We aim to address two key questions: (i) Can
NCScale improve the scaling performance by mitigating
the scaling bandwidth? (ii) Is the empirical performance of
NCScale consistent with the numerical results?

A. Setup

We implemented NCScale as an extension to
HDFS-RAID [4] (Section VI) and evaluated its scaling
performance in real-world environments. We also implemented
Scale-RS as an extension to HDFS-RAID for fair comparisons
under the same implementation settings. In both of our
NCScale and Scale-RS implementations, the storage nodes
perform the scaling steps independently and in parallel.

Note that for the scale-out in Scale-RS, the parity nodes do
not participate in the scale-out process, and hence Scale-RS
cannot fully utilize the resources of all nodes. Thus, we rotate
the parity placements for the scale-out of Scale-RS to involve
all nodes in the scale-out process. For the scale-in of Scale-
RS, it cannot handle the situation in which the parity blocks
reside in the removed nodes. Thus, we follow the original
Scale-RS [16] to organize all data blocks and parity blocks
in a RAID-4-like layout (i.e., all the parity blocks reside
in dedicated nodes), and require that the removed nodes
must be the nodes that hold data blocks. However, the
RAID-4-like layout reduces the scale-in performance of Scale-
RS (see Experiment 2).

1) Testbed: We conduct our experiments on Amazon
EC2 [1]. We configure a number of m4.4xlarge instances
located in the US East (North Virginia) region. The number
of instances varies across experiments (see details below), and
the maximum is 14. For scale-out, each instance represents an
existing storage node (before scaling) or a new storage node
(after scaling), while for scale-in, each instance represents a

TABLE II

EXPERIMENT 1: TIME BREAKDOWN OF NCSCALE FOR (n, k, s) = (6, 4, 2)
(SCALE-OUT) AND (n, k,−s) = (8, 6,−2) (SCALE-IN);

BLOCK SIZE IS 64 MB

surviving node or a removed node. To evaluate the impact of
bandwidth on scaling, we configure a dedicated instance that
acts a gateway, such that any traffic between every pair of
instances must traverse the gateway. We then use the Linux
traffic control command tc to control the outgoing bandwidth
of the gateway. In our experiments, we vary the gateway
bandwidth from 200 Mb/s up to 2 Gb/s.

2) Methodology: We measure the scaling time per 1 GB
of data blocks (64 MB each by default). Recall that
NCScale operates on collections of n(k + s)(n + s) stripes
(Section IV-B). In each run of experiments, depending on the
values of (n, k, s), we generate around 1,000 data blocks (and
the corresponding parity blocks), so as to obtain a sufficient
number of collections of stripes for stable scaling performance.
We report the average results of each experiment over five
runs. We do not plot the deviations, as they are very small
across different runs.

B. Results

Experiment 1 (Time Breakdown): We provide a breakdown
of the scaling time and identify the bottlenecked step in
scaling. We decompose a scaling operation into three steps that
are carried out by existing nodes: (i) compute, which refers to
the computation of new parity blocks or parity delta blocks,
(ii) send, which refers to the transfers of blocks during the
scaling process, and (iii) delete, which describes the deletion of
obsolete blocks after scaling. Since all existing nodes perform
scaling in parallel, we pick the one that finishes last and obtain
its time breakdown. We fix the block size as 64 MB and vary
the gateway bandwidth from 200 Mb/s to 2 Gb/s.

Table II shows the breakdown results. We first consider
scale-out, and focus on (6, 4, 2)-scaling. We observe that the
send time dominates (over 93% of the overall time), especially
when the available network bandwidth is limited (while the
compute and delete times stay fairly constant). This justifies
our goal of minimizing the scaling bandwidth to improve the
overall scaling performance. We next consider scale-in, and
focus on (8, 6,−2)-scaling. We again observe that the send
time also dominates (over 91% of the overall time), especially
under limited available network bandwidth.

Experiment 2 (Impact of Bandwidth): We compare NCScale
and Scale-RS under different gateway bandwidth settings.
We first consider scale-out. Figure 9 shows the scaling time
results, in which the block size is fixed as 64 MB. We find that
the empirical results are consistent with the numerical ones

(n − s)((n − k)(nk + sk − 2s2 − s) + sk(n − s) − 2) − min(n − k, k − s)((n − s)(k − s) + n)
nk(n − s)
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Fig. 9. Experiment 2 (Scale-out): Scaling time (per GB of data blocks), in seconds/GB, under different gateway bandwidth settings.

Fig. 10. Experiment 2 (Scale-in): Scaling time (per GB of data blocks), in seconds/GB, under different gateway bandwidth settings.

(Figure 7) in all cases, mainly because the scaling performance
is dominated by the send time. Take (6, 4, 2)-scaling for exam-
ple. From the numerical results (Figure 7), NCScale incurs
25.0% less scaling bandwidth than Scale-RS (i.e., three versus
four blocks, respectively), while in our experiment, Scale-RS
incurs 23.88%, 24.56%, 25.14%, and 23.90% more scaling
time than NCScale when the gateway bandwidth is 200 Mb/s,
500 Mb/s, 1 Gb/s, and 2 Gb/s, respectively (Figures 9(e)-9(h)).
Note that the scaling time increases with the redundancy
n
k (e.g., (3, 2, 1) has higher scaling time than (4, 3, 1) and
(5, 4, 1)). The reason is that the number of stripes per GB
of data blocks also increases with the amount of redundancy,
so more blocks are transferred during scaling.

We also compare NCScale and Scale-RS in scale-in.
Figure 10 shows the scaling time results, in which the block
size is fixed as 64 MB. Unlike scale-out, whose empirical
results are consistent with the numerical ones, the empiri-
cal results of scale-in are higher than the numerical ones
(Figure 8) in all cases. In particular, the scale-in of Scale-RS
is implemented in a RAID-4-like layout where the parity
nodes of Scale-RS do not participate the scaling process
(Section VIII-A), thereby leading to performance drops. Take
(8, 6,−2)-scaling for example. From the numerical results
(Figure 8), NCScale has almost identical scaling bandwidth

to Scale-RS, while our experiment shows that Scale-RS incurs
24.34%, 24.79%, 21.74%, and 19.95% more scaling time than
NCScale when the gateway bandwidth is 200 Mb/s, 500 Mb/s,
1 Gb/s, and 2 Gb/s, respectively (Figures 10(e)-10(h)). Similar
to scale-out, the scaling time increases with the redundancy
n
k (e.g., (4, 3,−1) has higher scaling time than (5, 4,−1) and
(6, 5,−1)). The reason is that the number of stripes per GB
of data blocks also increases with the amount of redundancy,
so more blocks are transferred during scaling.

Experiment 3 (Impact of Block Size): We study the scaling
time versus the block size. We fix the gateway bandwidth as
1 Gb/s and vary the block size from 1 MB to 64 MB.

Figures 11(a) and 11(b) show the results for scale-out.
We see that the scaling times of NCScale and Scale-RS
are fairly stable across different block sizes, and NCScale
still shows performance gains over Scale-RS. Figures 11(c)
and 11(d) show the results for scale-in. The observations are
similar as in scale-out.

Experiment 4 (Impact of s): Finally, we study the scaling
time versus s (the number of new nodes). We fix the gateway
bandwidth as 1 Gb/s and the block size as 64 MB. We also fix
(n, k) = (9, 6), which is a default setting in production [22].

Figure 12(a) shows the results for scale-out. Both NCScale
and Scale-RS need to transfer more blocks as s increases,
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Fig. 11. Experiment 3: Scaling time (per GB of data blocks), in seconds/GB, versus block size.

Fig. 12. Experiment 4: Scaling time (per GB of data blocks), in seconds/GB,
versus s.

and the difference of their scaling times decreases. Overall,
NCScale reduces the scaling time of Scale-RS by 16.3-22.5%.
Figure 12(b) shows the results for scale-in. Again, the perfor-
mance trends are similar as in scale-out, and NCScale reduces
the scaling time of Scale-RS by 17.65-19.91%.

IX. RELATED WORK

Scaling approaches have been proposed for RAID arrays,
including RAID-0 (i.e., no fault tolerance) [41], [45], RAID-5
(i.e., single fault tolerance) [12], [34], [42], [43], and RAID-
6 [35], [36], [40] (i.e., double fault tolerance). Such scaling
approaches focus on minimizing data block migration and
parity block updates (e.g., GSR [34] for RAID-5, and MDS-
Frame [35] and RS6 [40] for RAID-6), while keeping the
same RAID configuration and tolerating the same number
of failures. However, they are tailored for RAID arrays and
cannot tolerate more than two failures.

The most closely related work to ours is Scale-RS [16],
which addresses the scaling problem in distributed storage sys-
tems that employ RS codes [28] to provide tolerance against
a general number of failures. Wu et al. [38] apply scaling for
Cauchy RS codes [7], but use a centralized node to coordinate
the scaling process. In contrast, both Scale-RS and NCScale
perform scaling in a decentralized manner. However, existing
RAID scaling approaches and Scale-RS cannot minimize the
scaling bandwidth.

Some studies address the efficient transitions between
redundancy schemes. AutoRAID [33] leverages access pat-
terns to switch between replication for hot data and RAID-
5 for cold data. DiskReduce [10] and EAR [19] address
the transition replication to erasure coding in HDFS [30].
HACFS [39] extends HDFS to support switching between two
erasure codes to trade between storage redundancy and access
performance. Ring [31] and Elastic RS codes [37] address the
transitions between redundancy schemes for in-memory key-
value stores, and mitigate I/O costs by decoupling block-to-
node mappings.

On the theoretical side, Rai et al. [27] present adaptive
erasure codes for switching between the erasure coding para-
meters (n, k), and attempt to apply network coding to storage
scaling. However, the study [27] does not provide any formal
information flow graph analysis. Instead, it treats the scaling
problem as the repair problem and solves the scaling problem
with regenerating codes [8] (which achieve optimal repair).
However, both the repair and scaling problems are different,
as the scaling problem changes the erasure coding parameters
(e.g., k increases for scale-out and decreases for scale-in),
while the repair problem keeps the erasure coding parameters
unchanged. Thus, the amount of stored data in each node
(i.e., M/k) changes after scaling, but remains unchanged after
repair. This fundamental difference implies that the optimal
scaling problem cannot be directly mapped to the optimal
repair problem as in [27]. In contrast, our work is the first
formal study on applying network coding to storage scaling
and presents the formal information flow graph analysis on
the minimum scaling bandwidth that is achievable by random
linear codes. Furthermore, NCScale addresses the practical
perspective by presenting systematic code constructions and
prototype evaluation, both of which are not addressed in [27].
Maturana et al. [20], [21] study code conversion, which is a
similar problem that involves changing n and k in a distrib-
uted storage system. The studies [20], [21] focus on access
optimality that minimizes disk accesses, while we focus on
minimizing network bandwidth.

To summarize, we show how network coding can help
achieve the optimality of storage scaling in terms of net-
work bandwidth, using both analysis and implementation. Our
follow-up work [14] extends the theoretical analysis of the
paper for more parameters by generalizing (n�, k�) from the
condition n�−k� = n−k (in this work) to any (n�, k�) (in [14]).
Realizing the findings of [14] in NCScale is our future work.

X. CONCLUSION

We study how network coding is applied to storage scaling
from both theoretical and applied perspectives. We prove the
minimum scaling bandwidth via the information flow graph
model. We further build NCScale, which implements network-
coding-based scaling for distributed storage. Both numerical
analysis and cloud experiments demonstrate the scaling effi-
ciency of NCScale.
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